Mostrando entradas con la etiqueta ciencia. Mostrar todas las entradas

El canto de las neuronas, interpretando la melodía del cerebro



Inspirado por el legado del neuricientifico y Nobel Español Santiago Ramón y Cajal. Que en 1.906 recibió el galardón por sus estudios que describían la estructura de las neurona.

Y el mecanismo por el que se establecían las relaciones entre ellas. El también neurocientifico Javier de Felipe, que actualmente participa como miembro activo en el ambicioso programa The Human Brain Project

Iniciativa que trata de elaborar un mapa lo mas completo posible de la compleja red de conexiones, que se producen en las diferentes áreas cerebrales. Paralelamente ha puesto en marcha el proyecto titulado El canto de las neuronas, cuyo propósito es fusionar la tecnología informática, la neurociencia y la música.

En una experiencia única mediante la que imprimir una huella sonora del cerebro. Tan peculiar partitura interpreta los registros cartografiados de dos cerebros. En el primero caso, se extrajo tejido cerebral de un individuo sano, cuyas constantes vitales eran óptimas en el momento del fallecimiento, muestra que no presentaba ninguna anomalía cerebral de relevancia.

En el segundo caso por el contrario el cerebro seleccionado pertenecía a un sujeto, cuyo aumento en los depósitos de la proteína conocida como Beta Ameloide. Suponian que presentara un deterioro severo cognitivo producido por la enfermedad de Alzheimer

Las partituras traducidas por un algoritmo creado exproceso para esta empresa, ha sido interpretado por el cuarteto de cuerda Almus. Formación que cuenta con una dilatada experiencia respaldada por mas de veinte años de carrera. Los resultados se centran en las conexiones axonales que se efectúan mediante las espinas dendríticas o como Ramón y Cajal denomino "Mariposas del alma".



Interpretada en diferentes ocasiones a lo largo de esta temporada las obras pertenecientes al proyecto El canto de las neuronas. Combinan la rigor matemático de la practica científica y el lirismo creativo de la expresión artística



Olivino, una roca para luchar contra el cambio climático



El Olivino es un termino que a priori puede confundir relacionandose con el cultivo del olivar. Pero nada mas lejos de la realidad pues se trata de un mineral por cuyas características estéticas se le puede confundir con las esmeraldas. 

Y que ha llamado la atención de numerosos miembros de la comunidad científica por presentar una serie de propiedades, que adecuadamente tratadas podrían representar un enorme potencial en la captura de CO2. Lo que representaria una solución eficaz en la lucha contra la principal causa del cambio climático.

Estudiado por el consorcio de científicos perteneciente al Deep Carbon Observatory (DCO) que recientemente anunció el descubrimiento de un nuevo método para la producción de hidrógeno gaseoso gracias al Olivino sin necesidad de hidrocarburos El bioquímico Olaf Schuiling ha presentado un estudio cuyos esperanzadores resultados les confiere a este mineral la capacidad de absorber CO2 en grandes cantidades, evitando la desaparición de la capa de ozono y del sobrecalentamiento de la tierra. 


    El olivino  representaria una solución eficaz en la lucha contra la principal causa del cambio climático.

Utilizado como grava en algunas localidades holandesas, sus miembros están esparciendo por caminos y en los bordes de los arcenes en carreteras y autopistas olivino. Obteniendo grandes resultados en las tasas de captura de CO2 depositado en la atmósfera.

Relacionado: Tuber City, una ciudad suspendida sobre el rió Yamuna en Dehli

Resultados corroborados por el Real Instituto Holandés para la Investigación Marina en Yerseke,  situado en un brazo del Mar del Norte, Francesc Montserrat, un ecologista, está investigando la idea de difundir el olivino en el lecho marino. No muy lejos, en Bélgica, los investigadores de la Universidad de Amberes están estudiando los efectos de olivino en cultivos como la cebada y el trigo. 


The Virtual Museum of Life, la mayor plataforma de consulta científica digital de España



El Centro Superior de Investigaciones Cientificas (CSIC) es una institución que por su carácter divulgativo posee una enorme colección de activos y documentación bibliografica, que diseminadas en los numerosos edificios que posee, en rara ocasión se ponen a disposición ya no tan solo del publico sino del personal científico limitando su consulta a estudios programados previamente. The Virtual Museum of Life es un proyecto cuyo objetivo es corregir este déficit en el acceso a este valioso material digitalizando su contenido.

En total se han reunido hasta ahora 652 colecciones en una misma plataforma, presentadas en formatos multimedia el usuario tras registrarse podrá acceder a su contenido mediante un mapa interactivo en donde señalizados por iconos asociados graficamente, cada uno a una disciplina científica en concreto permite su consulta evitando desplazamientos leoninos. Virtual Museum of Life que inicio sus primeros estadísticos a partir de la inquietud de un equipo humano que debido a su conocimiento deciden poner en valor el conocimiento científico, desarrollando una serie de instrumentos que faciliten el acceso de cualquier ciudadano.

Producto de la colaboración de  Centro de Investigación y Desarrollo de Recursos Científicos, Bioscripts. Iniciativa empresarial que se dedica a desarrollar soluciones estadísticas, aplicaciones informáticas, además de organizar  cursos de educación Medioambiental. The Virtual Museum of Life en su primera fase cubre la totalidad de la geografía del estado español, y que haciendo uso de  tecnologías de la información y comunicación (TIC), democratiza el acceso a las bases de datos científicas, elaborando materiales que facilitan su estudio y comprension fomentando la divulgacion del conocimiento científico de forma intuitiva y amena.

Rose-Lynn Fisher - The Topography of Tears


Muchas de nuestras expresiones emocionales suelen ir acompañadas de una replica orgánica producto de la síntesis biológica. Quizás las lágrimas sean el ejemplo por sus características físicas mas conocido y accesible en principio desde el punto de vista de los sentidos.

A raíz de una reciente perdida la fotógrafa  Rose-Lynn Fisher, se formulo una serie de cuestiones relacionadas con la composición de estas burbujas que representan auténticos ecosistemas donde conviven multitud de especies a escala microbianas. Con la ayuda de un microscopio Zeiss, Rose adapto la cámara que emplea habitualmente para sus trabajos, realizando fotografía de las muestras de sus propias lágrimas.

Lo que en principio iba a ser un ejercicio catártico por el que metabolizar mediante la practica de lo que mas le gustaba, de la pena que le afligía. Se acabo transformando en un proyecto en el que a partir de la relación morfológica de cada lágrima y la emoción que la produce, realizando un trabajo de campo por el que catalogar cada tipo de lágrima en función de unas características especificas, y que tienen su origen en diferentes estados emocionales concretos.

En serie titulada  The Topography of Tears, podemos observar los diferentes organismos que nadando en un liquido acuoso clasificandolos según sus características. Realizadas desde el portaobjetos del microscopio algunas de las imagenes parecen tomas aéreas, en ellas se pueden apreciar los diferentes elementos que las habitan pudiéndolas identificar según sean proteínas, minerales, hormonas, anticuerpos o material enzimatico.


TerreForm - Bio City World Map of 11 Billion


Seleccionado para ser exhibido en la sección oficial de ultima edición de la Bienal de Arquitectura de Venecia. El proyecto  Bio City World Map of 11 Billion pretende representar un mundo superpoblado donde el tejido urbano ha colonizado la mayor superficie del planeta. 

Y donde sus mas de 11.000 millones de habitantes son residentes de ciudades estado que es la unidad político y geográfica en la que sus autores, el estudio de diseño avanzado TerreForm imaginan como se organizara tan ingente cantidad de población demograficamente dentro de cien años. 

Para eso han creado un mapa compuesto por celdas triangulares que conforman una especie de panal, donde han añadido individuos de la bacteria E.coli, la especie mas utilizada en bio ingeniería observando su evolución mientras se multiplican hacinadas en las placas de petri dispuestas para este propósito. Convirtiendo a la instalación en un auto autónomo compuestos por seres vivos que articulan las diferentes funciones que componen un ecosistema orgánico.

Bio City World Map of 11 Billion muestra la densidad d población como un gráfico paramétrico donde la materia es producto de la biosíntesis. Se utilizan colonias de E. coli como un método de cálculo analógico procesos biológicos para determinar la evolución de la población. Representando con técnicas bioluminiscentes los dos tipos de E. coli,  los rojos representarian las proyecciones del censo en un futuro, mientras que las colonias tintadas en verde representan las condiciones demográficas existentes en el inicio del proceso. 


Dos estudiantes desarrollan un cargador Wi-Fi que aprovecha la energía ambiental

Aplicando el mismo modelo wi-fi que utilizamos para conectarnos con nuestro equipo informático, tablet o móvil a Internet. Dos estudiantes pertenecientes a la Universidad de Duke en los Estados Unidos, han desarrollado un dispositivo que a partir de la utilicización de metamateriales en su fabricación capturan la energía en forma de microondas. 

Estos cargadores inalámbricos que poseen propiedades semiconductoras han demostrado su viabilidad técnica como sustituto tecnológico, de los tradicionales cargadores que utilizan como entrada la tradicional clavija del USB. Obteniendo tasas que superan los 7 voltios de energía, superando los cinco que se obtienen con las baterias actuales.

Cuando su profesor de ingeniería eléctrica e informática Steven Cummer contrasto los resultados del estudio. Pidió a sus creadores los estudiantes  Allen y Alexander Hawkes Katko, que les hiciera una demostración de funcionamiento del prototipo todavía en fase de pruebas con el que han obtenido una eficiencia de hasta el 38% en la captura de microondas, muy por encima de lo esperado.

Opera bajo un principio similar al de los paneles solares, que convierten los fotones de en electrones de energía. Pero en lugar de capturar rayos del sol esta configurado para recoger la señal de otras fuentes de energía, incluidas las señales de satélite, frecuencias sonoras o redes Wi-Fi, transformandolas en energía que de otra forma se perdería.

Los metamateriales son estructuras de capaces de capturar diferentes formas de energía convirtiéndolas en tensión eléctrica. Elaborados mediante la disposición de ciertos materiales, incluidos el cobre y la fibra de vidrio e incluso el oro, en una forma y patrón concreta sus propiedades hacen que su comportamiento como semiconductor pueda recolectar casi cualquier forma de onda o partícula.


Según los investigadores con ligeras modificaciones su cargador pendiente de patente, posee múltiples formas de aplicación en otros tantos ámbitos. Siendo un prototipo cuya tecnología permitiría el aprovechamiento de la practica totalidad energía electromagnética que con la tecnología actual se pierde.



Producen energia a partir de las frecuencias sonoras de la música Rock



A una de las condiciones a las que se esta prestando mas atención ultimamente, es a los elevados índices acústicos que se produce en el ámbito urbano de las grandes ciudades. Quizás esta atención tenga que ver con cada vez mas estudios científicos ponen de manifiesto el vinculo que existe entre los elevados índices de ruidos y diferentes conductas y trastornos psico-emocionales. 

Reflexionando sobre esta situación y sus posibles el doctor Steve Dunn, Profesor de materiales a nanoescala de la Escuela de Ingeniería y Materiales de Queen Mary en Londres. Ha estado trabajando en el desarrollo de prototipos capaces de absorver las frecuencias de sonido emitidas con el objetivo de generar energía limpia.

Con la intención de aplicación a la fabricación de obleas solares. Estos innovadores materiales capaces de cosechar los ruidos, son producto de la aleaciones de millones de filamentos microscópicos (nanorods) a base de óxido de zinc, luego cubierto con un polímero activo para formar un dispositivo que convierte la luz solar en electricidad.

Usando las propiedades especiales del material de óxido de zinc, el equipo fue capaz de demostrar que los niveles de ruido tan bajos como 75 decibelios (equivalente al ruido que produce la circulación en carretera o una impresora en una oficina) podría mejorar significativamente el rendimiento de la célula solar.


Pero lo mas curioso de este experimento es que para obtener tasas de eficiencia de hasta un 40%, las placas solares orientadas al sol en horario de máxima de exposición. Fueron sometidas a la emisión de las frecuencias de composiciones de Rock y Pop que debido a sus características sonoras, emitían la suficiente cantidad de vibraciones con las que complementar energeticamente a la producida a partir de los fotones solares.

Previamente se había demostrado que la aplicación de presión o tensión de los materiales de óxido de zinc puede producir energía a partir de un efecto piezoeléctrico. Las ondas sonoras, producen fluctuaciones aleatorias, anulándose entre sí siendo el mecanismo por el que se produce energía. 

Esta tecnología híbrida podría representar según sus creadores una solución para absorber la mayor parte de frecuencias producidas por los numerosos ruidos, por los que nos sentimos cohibidos llegando alterar la percepción que tenemos de la realidad que nos rodea. Siendo un método eficaz para su eliminación y viabilidad económica.



NOMAD - Phytology, huerto urbano, arte y biomedicina en el centro de Londres


En una parcela abandonada desde la finalización de la segunda guerra mundial, cuando un bombardeo destruyo una iglesia perteneciente a la congregación anglicana del distrito Tower Hamlets en Londres, el colectivo artístico NOMAD ha desarrollado el proyecto Phytology.  

Una iniciativa que en principio tendrá un plazo de dos años de duración, y para que el se ha planificado un calendario de actividades, que contempla la creatividad la artística, el cultivo de plantas medicinales y especias, como bases a partir de los que investigar los posibles efectos terapéuticos sobre el organismo.

Ubicado en las proximidades de la estación de ferrocarril de Cambridge Heath, entre tanques de madera pulcramente alineados trabajan afanosamente artistas y botánicos cultivando variedades de ortiga, diente de león,  salvia o el ajenjo, con el objetivo de crear aplicaciones biomédicas a partir del conocimiento aportado por las medicina natural y la practica artística.


El uso de remedios de origen vegetal se remonta a la época prehistórica, y es una de las formas más extendidas de medicina, presente en virtualmente todas las culturas conocidas. La industria farmacéutica actual se ha basado en los conocimientos tradicionales para la síntesis y elaboración de fármacos, y el proceso de verificación científica de estas tradiciones continúa hoy en día, descubriéndose constantemente nuevas aplicaciones.

En la concepción del proyecto Phytology han participado las asociaciónes Cape Farewell, Teesdale que atienden a colectivos en situación de exclusión social y en el desarrollo de programas científicos que estudian las causas y efectos del cambio cambio climático.

Phytology cuya metodología se ha dividido en tres fases a través de las que se realizaran estudios científicos sobre el potencial de las hierbas medicinales y diferentes expresiones artísticas en relación a la salud. Paralelamente se activaran una serie de recursos divulgativos relacionados con los trabajos que se pondrán a disposición del gran publico a través de las diferentes plataformas sociales y de lo canales de comunicación de los que disponen las entidades implicadas en el proyecto.


View Larger Map

Material gráfico cortesía de Inhabitat

Desarrollan células solares orgánicas y reciclables


Las células solares se han convertido la manera más respetuosa con el medio ambiente para el aprovechamiento de energía y generar electricidad sin emisiones. Sin embargo, la fabricación de placas solares representan la paradoja de ser bastante anti-ecológica suponiendo un excesivo consumo de recursos hidráulicos y materias primas. 

Dirigido por el doctor en ingeniería Bernard Kippelen un equipo de   investigadores que trabajan actualmente en el Centro de Fotónica y Electrónica Orgánica en Georgia Tech en colaboración con la Universidad de Purdue afirman haber desarrollado células solares a partir de materiales vegetales.

En la actualidad el tratamiento de los residuos que producen la sustitución de las placas solares obsoletas por otras mas eficientes y avanzadas tecnologicamente, supone un desproporcionado impacto ecológico debido a que los materiales con los que están fabricados los componentes de las placas solares son muy dificiles de reciclar.

Utilizando los mismos sustratos orgánicos básicos que usan las plantas para el proceso químico que facilita la fotosíntesis, las nuevas células solares orgánicas convierten alrededor de 2,7% de la energía solar que reciben en electricidad. El número es bastante impresionante si tenemos en cuenta que se tratan de materiales químicamente orgánicos.

Una estructura fácilmente biodegradable llamada nanocristales de celulosa se utiliza para montar estos sustratos orgánicos que permiten que las células solares puedan ser recicladas usando nada más que agua caliente en su tratamiento. El equipo de investigación conjunta ha creado así una forma más respetuosa del medio ambiente para crear y reciclar la tecnología que se utiliza para proporcionar energía verde.

El equipo ahora está trabajando en tratar de obtener estos sustratos orgánicos para convertir la energía solar de manera más eficiente y, llegando a los dos dígitos de eficiencia de conversión energética en un plazo razonable. El grupo planea lograrlo mediante la optimización de las propiedades ópticas del electrodo, recubriendo estas células con una capa delgada con el propósito de proteger las células contra el agua y el oxígeno al que están expuestas.

Esto es lo que sucede cuando dejas correr el agua exponiendola a una onda senoidal de 24 Hz



Debido a la teoría de la gravedad de Isaac Newton el agua se precipita debido a la atracción que ejerce el magnetismo de la tierra. ¿Pero que sucedería si se expusiera al sonido de una onda senoidal la trayectoria del agua?

Pues que podaríamos crear una estimulante coreografía acuática, como la realizada por el colectivo de Ilusionismo y Ciencia  Brusspup, y que muestran en su ultimo  vídeo como una corriente de agua expuesta a un altavoz que produce una onda senoidal de 24 Hz, modifica el trazado de la trayectoria del agua, transformando el arco en un zig-zag.

Hace ya muchos años que el matemático francés J. Fourier (1768+1830) concluyó que cualquier forma de onda puede descomponerse en varias ondas senoidales de diferentes frecuencias. La onda senoidal es aquella que sólo posee una frecuencia. El sonido natural que más se asemeja a una senoidal es el silbido, que básicamente tiene sólo una frecuencia. 


Amazing Water n´ Sound Experiment #2 es una experiencia visual que registra el efecto óptico que produce el sonido senoidal grabado con una cámara de 24 fps. La instalación consta de una manguera de agua que está conectada a un altavoz, de manera que cuando el altavoz produce un sonido, vibra la manguera, modificando el trazado del curso del agua.


El cable de audio conecta el computadora y el altavoz,  ajustando el software de sonido la onda a 24 hz.  Se pueden obtener diferentes resultados dependiendo del ajuste la frecuencia entre 23 y 25 Hz.



Desarrollan células solares de grafeno que producen hasta un 60% de energía


Actualmente en el mercado se pueden encontrar para consumo domestico células solares con una eficiencia que oscila entre el 20% y el 25%, fabricadas en su mayoría con arseniuro de galio o silicio ya sean policristalinas o monocristalinas, tasas de absorción realmente bajas que impide que la tecnología se implante masivamente. 

Los fabricantes son conscientes de que el reto para que la tecnología solar pase de ser una alternativa a los combustibles fosiles, a convertirse definitivamente en la piedra angular que sustituya la dependencia de los derivados del petroleo, pasa por desarrollar polimeros con los que fabricar celdas solares que aprovechen lo máximo posible el rango de luz emitido por el espectro solar. 

Entre las diferentes propuestas para corregir este déficit y tras varios lustros de investigaciones infructuosas, la aparición en escena del grafeno parece que puede propiciar nuevos e importantes avances en el aumento de captación de radiación solar y por  tanto en la producción de energía solar.

El equipo del Instituto de Ciencias Fotónicas (ICFO) en Barcelona España, dirigido por ingeniero Frank Koppens ha demostrado que el grafeno podría resultar mucho más eficaz a la hora de transformar la luz en energía. En el estudio se observo que a diferencia de silicio, que genera sólo una corriente de electrones de conducción para cada fotón que absorbe, el grafeno puede producir múltiples electrones.

Aunque la aplicación del grafeno en las células solares es sólo teórico, el potencial  indica el estudio es notable, las células solares hechas con grafeno han alcanzado hasta 60% de eficiencia, mas de el doble de la máxima eficiencia obtenido con las células actuales. 

Publicado en el ultimo numero de Nature Physics este nuevo nuevo estudio muestra un "concepto muy importante", ya que los dispositivos futuros dependerán de la comprensión de los procesos físicos que se producen cuando el grafeno absorbe la luz.

Aunque por el momento los resultados de este estudio se podrían aplicar al desarrollo de sensores de imagen para cámaras, sensores médicos, y óptica de visión nocturna. El grafeno debido a sus característica posee  
propiedades ópticas como material fotovoltaico. 

Pudiendo trabajar con cualquier longitud de onda posible, no existiendo ningún otro material en el mundo con este comportamiento, además de ser flexible, robusto y relativamente, es sencillo de integrar con otros materiales.

Publicidad que produce agua potable a partir de la humedad del aire


Perú debido a su situación geográfica y sus condiciones climatológicas presenta un patrón de precipitaciones insuficiente para cubrir su demanda de agua potable, pero si embargo es debido a esas mismas circunstancias climáticas y geograficas por lo que tiene un 98% de humedad en el aire. 

Enormes recursos hidricos que son desaprovechados y que de aplicar la tecnología adecuada, solucionarían los problemas de abastecimiento de agua. Tanto la destinada a consumo humano como la destinada a actividad industrial. 

Produciendo agua de calidad y evitando de esta forma el consumo de agua bombeada de cuencas subterráneas, la cual debido a la escasez de sistemas de depuración su cuestionable calidad origina problemas de salud entre la población que la consume. 


Ingenieros pertenecientes a la Universidad de Ingenieria y Tecnologia de Lima, han desarrollado un sistema de extracción y depuración que utiliza los postes publicitarios, como soporte producción y almacenaje de agua, aprovechando las enormes bolsas de agua condensada que hay en el aire circulante. 

El innovador sistema situado a la altura del Km 89.5 de la carretera de la Panamericana Sur, en las afueras de la localidad costera de Bujama, se instalo como elemento de una valla publicitaria. La cuál presentaba una capacidad para generar 98 galones de agua potable.


El prototipo incorpora un sistema compuesto por filtros que purifica el agua fabricados con carbón activado y antiséptico, solución con la que se logra generar un agua de excelente calidad.


Esta iniciativa forma parte de una campaña intstitucional que tiene como objetivo, promover el interés de la ingeniería entre la población en general, y especialmente entre los miembros de la comunidad escolar. 



Nuevo récord mundial de eficiencia de células solares CIGS


El futuro de la energía solar pasa por que los avances en innovación, se puedan aplicar tecnologicamente a cualquier tipo de superficie con el propósito de producir el máximo de energía posible al menor coste. Nuevos materiales elaborados a partir de polimeros con cualidades catalíticas, cuyo resultado sean obleas fotosolares flexibles que le permitan adaptarse a diferentes estructuras.

Investigadores pertenecientes a los Laboratorios Federales Suizos para la Ciencia y Tecnología de Materiales (Empa) en Suiza, llevan años obteniendo unos resultados en el desarrollo de tecnologías solares CIGS basada en semiconductores elaborados con cobre, indio, galio  y seleniuro, conocido por su potencial para proporcionar rentable la electricidad solar.

Para hacer que la electricidad solar asequible a gran escala, los científicos e ingenieros de todo el mundo llevan tiempo tratando de desarrollar una célula solar de bajo costo, que a la vez sea muy eficiente y fácil de fabricar con un alto rendimiento. Dirigidos por el profesor Ayodhya N. Tiwari parece que han dado con la formula estableciendo un nuevo récord del 20.4% de eficiencia de conversión de energía, utilizando una película delgada fotovoltaica fabricada con un sustrato de polímero flexible CIGS.

Este registro representa una enorme mejora sobre el anterior récord del 18,7% alcanzado por el mismo equipo en mayo de 2011. a los que habría que sumar producto del trabajo realizado durante los últimos trece años por el equipo de Tiwari, mas concretamente la serie arranca con el 12,8% en 1999  ascendiendo hasta el 14,1% en 2005, 17,6% en 2010 y el ya citado del 18,7% en 2011.


Para conseguir esta tasa de eficiencia  se tuvieron que modificar las propiedades de la capa CIGS, cultivandose a bajas temperaturas, aumentando de esta forma la absorción de luz por parte de las células solares. El valor de eficiencia de las células fue certificado por el Instituto Fraunhofer para Sistemas de Energía Solar (ISE) en Friburgo, Alemania. 



Las 
células solares flexibles  de película delgada además presenta la ventaja  de que su proceso de fabricación a gran escala, en comparación con los tradicionales paneles solares basados ​​en silicio presenta un rendimiento económico mucho mayor debido a que su tecnología se puede aplicar en diferentes sectores como la construcción, la industria textil, las telecomunicaciones, la industria del automovil etc...



BioScapes Digital Imaging, imagenes ganadoras de fotografía microscopica


Gracias a los avances en tecnología óptica concursos como BioScapes Digital Imaging, organizado por la marca de cámaras fotográficas Nikon Olympus se han popularizado contando con participantes, tanto con formación científica como aficionados. 

Dividido en dos categorías vídeo y fotografía, Bioscapes que ha cumplido su décimo aniversario siendo el decano de los concursos especializados en fotografía microscopica, ha superado todas las expectativas de participación. Con alrededor de quinientos trabajos presentados de los cinco continentes.

El jurado formado por personal científico han valorado un conjunto de técnica sque incluyen, campo oscuro, contraste de fases, contraste de interferencia diferencial, fluorescencia, contraste de modulación Hoffman,  multifotónica, y una variedad de métodos avanzados de fluorescencia cuantitativa.

Con los que se consigue capturas a escala microscopica que de otra forma seria imposible de observar por el ser humano, permitiéndonos acceder a un mundo donde podemos presenciar como funcionan diferentes organismos y tejidos a nivel celular.

Los ganadores en esta edición van desde una imagen en tonos neón del cerebro de una mosca de la fruta a una imagen donde se registra la garra de un cangrejo resaltando el pigmento característico de este crustáceo. Por primera vez en la historia de la competición, el primer premio  fue otorgado  a una presentación en vídeo. 

Realizada por Ralph Grimm, un profesor de secundaria, apuntó con su cámara a un estanque donde unos organismos conocidos como rotíferos, pequeños animales microscopicos que se alimentan de bacterias muertas y algas. En otras palabras limo.

Solar Impulse anuncia su primer vuelo transcontinental


Desde que Icaro se chamusco las alas de ganso con las que adosada a la espalda intento alcanzar el solo, la historia de la aeronáutica se ha cimentado en la consecución de gestas, que ha consistido en plantearse retos territoriales (cruzar un océano, unir dos ciudades sin realizar escalas...etc) combinandolos con retos donde la resistencia y la tecnología eran don factores determinantes en los numerosos y variados proyectos por los que la humanidad ha conquistado el cielo obteniendo ha cambio la facultad de poder desplazarse volando.

A comienzos de este siglo XXI las distancias a cubrir y los territorios por los que se vuela siguen reuniendo practicamente las mismas características, pero las especificaciones técnicas, así como el origen de la energía que emplean y los innovadores materiales que cada día se descubren, representan nuevos hitos para los pioneros de la aviación de esta primera y vertiginosa década.


Quizás la aventura que acaparado mas atención por parte de la comunidad científica internacional, de la prensa y de la opinión publica, sea el proyecto Solar Impulse. Incubado por los ingenieros aeronáuticos Bertrand Piccard y Brian Jones en 1.999. Es en 2.004 cuando se incorpora el piloto André Borschberg, dando el paso definitivo para la constitución de una sociedad anónima a través de la que financiar sus proyectos.




Desde entonces los prototipos con los que han desarrollado sus diferentes misiones, en las que aplicando el conocimiento y la investigación obtenida a través del departamento que poseen espacializado en el desarrollo de sistemas que propulsados, utilizando únicamente como energía la obtenida a partir de la obtención de fuentes renovables (principalmente solar), han cosechado numerosos éxitos, demostrando que se puede concebir un futuro mas o menos inmediato en el que los aviones que surcan el cielo no lo tracen con estelas, pudiendo sustituir los caros y contaminantes combustibles por energía verde.

Recién anunciada su ultima y mas transcedental misión, programada para 2.013  no tiene nada que ver con las misiones realizadas hasta ahora. Consistentes la mayoría en la consecución de trayectos trazados sobre territorio europeo (cabe recordar que su sede central esta en Lausanne Suiza), de corta y media distancia en las que se empleando avionetas adaptadas con sistemas solares. 


Ahora el equipo formado por Piccard y Borschberg se han marcado como reto cubrir la distancia entre los dos océanos que flanquean los Estados Unidos, en un único vuelo sin escalas entre las ciudades de San Francisco (bañada por el océano Pacifico) y New York (por el Atlántico), utilizando únicamente la energía extraída del sol. Posibilidad que hasta su anuncio constituía una entelequia y que de consumarse con éxito, supondría la antesala para los preparativos de lo que seria la primera al vuelto de un vuelo sin escalas, utilizando como única fuente de energía, la producida gracias al sol.

Se preve que este primer vuelo transcontinental tendrá una duración de aproximadamente veinte horas interrumpidas en las que se alternaran en su tripulación Piccard y Borschberg. Contando en todo momento con la asistencia
de un nutrido equipo humano de personal técnico especializado, que alertara de cualquier posible incidencia que pueda suceder a lo largo de la travesía.

En el aspecto técnico el avión cuenta con con la incoporación de mas de 11.500 células solares en las alas, capaces de suministrar energía a sus cuatro motores de diez caballos de fuerza cada uno. El fuselaje del avión presenta una envergadura equiparable a la de un Airbus A340, pero sorprendentemente sólo pesa mil seiscientos kilos, poco que una furgoneta de reparto, Alcanzando una velocidad de setenta kilometros hora,  consumiendo aproximadamente la misma misma energía que una motocicleta.


Crean pilas híbridas destinadas a la producción de energía cinética


Energía y movimiento son dos conceptos que pese a complementarse, en términos prácticos este mecanismo productor de energía ha sido muy poco aprovechado. Aunque existen numerosos proyectos que tratan de aprovechar la enorme capacidad de la piezoelectricidad para generar electricidad utilizando la energía que cinéticamente genera un organismo en movimiento.

Recientemente, los investigadores del Georgia Institute of Technology han creado lo que ellos creen es un método más eficiente. Ellos han desarrollado una célula de energía de auto-carga que convierte directamente la energía mecánica en energía química. La célula almacena la potencia hasta que se libera como una corriente eléctrica. 


Mediante la creación de una célula híbrida generador-almacenamiento, se han eliminado la necesidad de emplear sistemas que utilizan una batería independiente del generador, reduciendo la cantidad de peso y espacio que normalmente se requiere para acomodar dispositivos que generen, almacenen y suministren la energía cinética.

El estudio dirigido por Zhong Lin Wang, profesor regente en la Escuela de Ciencia e Ingeniería de Materiales en el Instituto de Tecnología de Georgia, afirma que el sistema de carga se acumula en ciertos materiales sólidos con características piezoeléctricas, conducen los iones de litio de un lado de la célula cuando la membrana se deforma por el estrés.

Mediante el aprovechamiento de una fuerza de compresión (cinética), tal como un talón del zapato golpeando sobre un material (piezoeléctrico) el pavimento, la célula de genera suficiente corriente para alimentar una pequeña calculadora. 


Una celda de potencia híbrida del tamaño de una pila botón convencional puede alimentar pequeños dispositivos electrónicos - y podría tener aplicaciones militares para los soldados que podría algún día el equipo de recarga de baterías mientras caminaban.

La célula de potencia consta de un cátodo hecho de litio-óxido de cobalto (LiCoO2) y un ánodo compuesto de dióxido de titanio (TiO2) nanotubos cultivados sobre una película de titanio. Los dos electrodos están separados por una membrana hecha de poli (fluoruro de vinilideno) (PVDF), que genera una carga piezoeléctrica cuando se somete a tensión. 


Cuando la célula de potencia se comprime mecánicamente, la película de PVDF genera un potencial piezoeléctrico que sirve como una bomba de carga para conducir los iones de litio del lado del cátodo al lado del ánodo. La energía se almacena en el ánodo como el óxido de litio-titanio. 

Hasta el momento, Wang y su equipo de investigación, han construido y probado más de 500 de las células de energía. Wang estima que la celda híbrida será tanto como cinco veces más eficiente en la conversión de energía mecánica en energía química que un generador y una batería por separado. 


El sistema podría ser utilizado para convertir la energía mecánica que se produce al caminar, de la que generan los neumáticos de un vehículo, a partir de las olas del mar cuando golpean en la costa o de las vibraciones mecánicas producidas por multitud de objetos.



Graig Venter crea una impresora 3D capaz de imprimir vacunas y genes


Graig Venter quizás sea el genetista mas conocido por la opinión publica, controvertido como pocos, esta considerado como el primero que secuencia la totalidad de los pares de bases de un genoma humano, en concreto el suyo. Su nombre también se hizo famoso a raíz del anuncio hace poco mas de un año, de la sintetización del primer organismo artificial.

Ahora vuelve a sorprendernos con el anuncio de que esta trabajando en el desarrollo de una impresora 3D, por la que imprimir antivirus y secuencias de nucleotidos de ADN. ¿Se imaginan sustituir en los tóners la tinta por serie por secuencias de adenina, citosina,  guanina, timina y uracilo amplificadas por PCR, con los que secuenciar los aminoaciados que forman las proteínas? 

El replicador descrito por Venter o "teletransportador biológico" como el lo define, consistiría básicamente en un un archivo electrónico que expresaría el código de ADN que puede ser enviado por e-mail o móvil. Transferidos a un dispositivo receptor el repertorio de nucleótidos, azúcares y/o aminoácidos se combinarian químicamente para ser impresos en forma de vacunas.

Venter fundador y director general de Genómica Sintética Inc. , una firma genómica comercial, y de la J. Craig Venter Institute (JCVI) , una organización de investigación sin fines de lucro explorar la genómica. Realizo el anuncio del proyecto a través de videoconferencia desde su sede en New York. Su equipo está trabajando a través de escenarios en los que tienen menos de 24 horas para hacer una nueva vacuna con este gadget.

El propósito es poder actuar en situaciones de emergencia como catástrofes humanitarias o escasez de antibióticos. Podemos digitalizar biología, envíelo a la velocidad de la luz y volver a configurar la biología en el otro extremo. El dispositivo podría ser utilizado para administrar vacunas en casos de epidemial. 

Venter no es el primero que intenta imprimir cerámica biológica. Los científicos han tratado de imprimir los vasos sanguíneos, y diferentes órganos con desigual éxito. 
Obviamente, esto sería un dispositivo mucho más complejo de lo que Las impresoras 3D de hoy en día que se utilizan para reproducir piezas de plástico, pero el concepto es potencialmente transferibles a materiales biológicos. 

La bio-impresora, en teoría, podría realizar y distribuir una vacuna rápidamente a cualquier lugar del mundo, a través de un correo electrónico masivo con las especificaciones de la vacuna se podría hacer a una pandemia, o un ataque bioterrorista en cuestión de minutos. se imprimiría vacunando a la población. 

Según los escépticos de materializarse el proyecto y ponerse en practica, se enfrentaría a diferentes peligros potenciales. ¿Qué podría salir mal? por ejemplo nadie puede garantizar que las formulas caigan en manos poco seguras o envíos masivos que terminan tirados en un buen número de filtros de spam. ¿Cómo podemos garantizar el control de calidad? Peor aún, las especificaciones de la vacuna podían convertirse en un arma biológica.

Todo esto esta aun por dilucidar, según Venter los beneficios de la bio-impresora están por encima de los inconvenientes. Si los reguladores permiten que se aplique este enfoque futurista, la salud pública se transformaría pudiendo proporcionar soluciones virales in situ. Sus aplicaciones en la atención sanitaria se podría extender a muchas otras disciplinas sanitarias acelerando la curación de los enfermos y sus diagnostico.

Producen biodiesel mas barato a partir de los lodos de depuradora sin necesidad de catálisis


Tengo una relación amor / odio con los biocombustibles y el biodiesel en particular, ya que si bien pueden ser más limpios que los combustibles petroquímicos, además de tener la consideración de ser recursos renovables, el empleo de la materia prima por lo general implica una gran cantidad de tierra y de agua, los cuales son recursos limitados, como consecuencia sube el precio de los productos básicos destinados a consumo humano. 

Esto podría cambiar gracias a un nuevo proceso termoquímico que puede convertir los lípidos a partir de lodos de depuradora en biodiesel. El bajo costo y alto rendimiento del proceso puede hacer que sea económicamente viable como fuente para producir biocombustibles, afirman los investigadores. 

Dirigidos por por el ingeniero químico Kwon Eilhann del Instituto de Investigación de Ciencia Industrial y Tecnología , utilizaron n- hexano para extraer los lípidos del lodo extraído de la planta de tratamiento de aguas residuales en Suwon-City, Corea del Sur. En comparación con los rendimientos publicados de los lípidos de la soja, la producción a partir de los lípidos fue 2.200 veces más por gramo de materia prima. Cada litro producido a partir de los lípidos ascendió $ 0,03, mientras que cada litro de soja cuesta $ 0,80.


Hoy en día, los productores de biocombustibles utilizan aceites vegetales o grasas animales para obtener biodiesel, una mezcla de ésteres metílicos de ácidos grasos que es compatible con los motores diesel existentes, sus ventajas es que es menos contaminante que el diesel derivado del petróleo y su origen es de recursos renovables. Pero el alto costo de la producción de biodiesel limita su uso generalizado.


El problema es que las impurezas, incluyendo los ácidos grasos que hay en los lípidos extraídos de lodos de aguas residuales puede interferir con el proceso convencional catalítico para la producción de biodiesel. Así que el equipo de Kwon desarrollo un método que evita la catalísis.

El equipo pensó
 que el calor (termoqumica), en lugar de la catálisis, podría conducir la reacción de los lípidos con metanol para producir biodiesel. También razonó que a más tiempo de contacto entre los lípidos y el metanol la reacción más eficaz. Realizando la reacción un material poroso para atrapar los reactivos.

Para probar su idea, el equipo alimento con
 metanol, y los lípidos de lodos extraídos en un reactor que contiene alúmina porosa, calentándose el reactor a 380 ° C. Posteriormente se añadió dióxido de carbono al reactor mejorando el rendimiento de la reacción, transformando cerca del 98% de los lípidos en biodiesel.

El nuevo proceso para la conversión de los lípidos extraídos de lodos de aguas residuales muestra un alto potencial para lograr un avance importante para minimizar el coste de producción de biodiesel, debido a su simplicidad y ventajas técnicas, así como los beneficios ambientales.

SunJack, como hacer un cargador de pilas solar con naipes e imanes


Según su creador Shawn no precisas mas de 15 minutos de tu tiempo y los de materiales adecuados, para disponer de un cargador de pilas solar. 

Experto en el desarrollo de células solares y fundador de Haddock Invention. Una joven compañía, que tiene diferentes proyectos relacionados con el sector de las energías renovables. 

Además es un firme defensor y un activista de la tecnología libre y compartida, poniendo a disposición de los demás sus conocimientos en la creación de pequeñas soluciones tecnologicas.


Como SunJack, un cargador de pilas para pilas AAA o AA, para el que emplea materiales en la mayoría de los casos relativamente fáciles de conseguir. En el vídeo que ha realizado y 
que podéis ver AQUI

Lo explica con mas detalle, el montaje de los diferentes elementos, empezando por el guiño simpático del naipe que utiliza como soporte de la cinta de cobre adhesiva. Sobre la que se añaden pequeños fragmentos de células fotovoltaicas de silicio.


SunJack se puede ampliar con un lector LED, todo un invento con el que ahorrar energía y adquirir conocimiento de forma sencilla y divertida.


Además de 4 imanes NdFeB entre 1/4 "- 1/2" de diámetro, 1/32 "- 1/8" de espesor, de cualquier grado entre N42 - N52, elementos necesarios para su montaje. Para fijar los polos de las pilas se emplea pegamento de contacto por lo que no se precisa soldadura.

El dispositivo solar de aspecto algo rudimentario posee una potencia 1.5Vdc y 100mA, suficiente para recargar baterías NiMH 2000mA, aunque en próximas entregas promete ofrecer soluciones mas potentes.



Nuevo chip capta energía de fuentes múltiples

Un equipo de científicos pertenecientes al MIT de Massachusetts, han desarrollado un nuevo chip electrónico que podría marcar un primer paso crítico hacia la batería de sistemas libres. El chip con capacidad de operar en niveles extremadamente bajos de energía, puede obtener energía a partir de diversas fuentes - incluyendo la luz del sol , fuentes térmicas y las vibraciones que se produce en el medio ambiente. De incorporarse esta tecnología en multitud de electrodomésticos, dispositivos sanitarios, sensores, aparatos electrónicos, dispositivos electrónicos, gadgets....Aseguraria el suministro y almacenamiento de energía de forma autónoma, sin necesidad de recurrir a las fuentes tradicionales de eléctrica.

El equipo responsable del desarrollo del nuevo chip está dirigido por el profesor del MIT Anantha Chandrakasan. Los resultados publicados en la versión digital Solid State Circuits, indica que el objetivo del equipo es crear un chip que logre un uso eficiente de fuentes de energía múltiples en un único dispositivo compartido.  El trabajo previo del laboratorio del MIT  se ha centrado en el desarrollo de chips de computadoras y en la comunicación inalámbrica, que puedan operar a niveles de potencia muy bajos.

El chip consiste en el diseño de una arquitectura de doble vía para el aprovechamiento  energético, obteniendo una mejora eficiencia máxima entre el 11% -13% con respecto al tradicional enfoque de dos etapas. El sistema implementado consiste en una matriz de conmutación reconfigurable multi-entrada, multi-salida que combina la energía de tres distintas fuentes de recolección de energía fotovoltaica, termoeléctrica, y piezoeléctrica. El sistema puede manejar voltajes de entrada de 20 mV a 5 V, siendo capaz de extraer la máxima potencia de los recolectores individuales al mismo tiempo utilizando un inductor clave. 

La mayoría de los sistemas informáticos que generan electricidad a partir de factores ambientales se centran en una fuente particular o interruptor entre ellos a fin de tomar ventaja del que genera una mayor energía en un momento dado, pero el equipo del MIT cree que se puede hacer uso de una gama de fuentes de energía al mismo tiempo. Las eficiencias máximas logradas con el intercambio de inductor son el 83%, 58% y 79% para reforzar la fotovoltaica, termoeléctrica y piezoeléctricos.

Los dispositivos individuales aprovechan estas fuentes de energía, como la diferencia entre la temperatura del cuerpo y el medio ambiente, o los movimientos y vibraciones de cualquier objeto o persona, la combinación de la potencia de estas fuentes variables requiere un sofisticado sistema de control, integrados en un chip único inductor de tiempo compartido, un componente crucial para apoyar a los convertidores múltiples.

Con innovaciones como éstas en las que se combinan múltiples fuentes de energía, estos sistemas pueden ahora comenzar a aumentar la funcionalidad. Los beneficios de la operación de múltiples fuentes, no sólo incluyen el máximo pico de energía sino además de la garantía en el suministro al operar en diferentes entornos y fuentes.