Mostrando entradas con la etiqueta renewable energies. Mostrar todas las entradas

Desarrollan rcubrimientos resistentes al agua para paneles solares inspirados en alas de la mariposa


Debido a su exposición los paneles solares se ven sometidas a múltiples incidencias climatológicas que inciden en su rendimiento. Ráfagas de viento dañan las células de silicio deteriorándose con el transcurso del tiempo, además de acumular suciedad por acumular suciedad e impurezas lo que exige un atención  constante repercutiendo en mas gastos económico  adicionales, y reduciendo su eficiencia pues para mantenerlos en óptimas condiciones es necesario emplear productos especialmente indicados para el tipo de superficies del que están hechas las obleas solares.

Como en muchas otras ocasiones la naturaleza podría servir de modelo como estrategia para evitar los desperfectos y la falta de adherencia solar. Observando a las mariposas Shu Yang profesora de la Universidad de Pennsylvania, ha desarrollado un material fotorristente que protege de las incidencias exteriores, produciendo un efecto autolimpiador sobre las placas solares. 

Imitando una cualidad de las alas de la mariposa, el equipo de Shu Yang, ha utilizado litografía holográfica para desarrollar un material que imita las características iridiscentes y de resistencia al agua que presenta las alas de la mariposa. 

El proyecto atrajo la atención suficiente del departamento de investigación de materiales avanzados y energía perteneciente a la institución educativa, como para que el profesor a través de la concesión de una beca desarrollase recubrimientos hidrófobos que aplicados en forma de película ultra fina sobre los paneles los se mantienen secos y limpios, elevando la eficiencia de los soportes solares.

Cuando la luz incide sobre las diferentes capas del ala de la mariposa, multiplicando sus reflejos sobre la superficie del ala, este fenómeno provoca  que los colores cobren intensidad. Algunas especies de mariposa incluso poseen la capacidad de registrar el espectro de luz ultravioleta, que es visible para mariposas pero no a los seres humanos

Para recrear las propiedades reflectantes de las alas,  Shu Yang utilizo un láser, haciendo un patrón reticulado 3D fotorresistente. Tras aplicarle un disolvente la estructura 3D se consiguió reproducir la textura que imita las alas de mariposa, repeliendo el agua y las impurezas que contiene, consiguiendo alargar la vida útil de los paneles y aumentando su producción energética. 

Solar Impulse anuncia su primer vuelo transcontinental


Desde que Icaro se chamusco las alas de ganso con las que adosada a la espalda intento alcanzar el solo, la historia de la aeronáutica se ha cimentado en la consecución de gestas, que ha consistido en plantearse retos territoriales (cruzar un océano, unir dos ciudades sin realizar escalas...etc) combinandolos con retos donde la resistencia y la tecnología eran don factores determinantes en los numerosos y variados proyectos por los que la humanidad ha conquistado el cielo obteniendo ha cambio la facultad de poder desplazarse volando.

A comienzos de este siglo XXI las distancias a cubrir y los territorios por los que se vuela siguen reuniendo practicamente las mismas características, pero las especificaciones técnicas, así como el origen de la energía que emplean y los innovadores materiales que cada día se descubren, representan nuevos hitos para los pioneros de la aviación de esta primera y vertiginosa década.


Quizás la aventura que acaparado mas atención por parte de la comunidad científica internacional, de la prensa y de la opinión publica, sea el proyecto Solar Impulse. Incubado por los ingenieros aeronáuticos Bertrand Piccard y Brian Jones en 1.999. Es en 2.004 cuando se incorpora el piloto André Borschberg, dando el paso definitivo para la constitución de una sociedad anónima a través de la que financiar sus proyectos.




Desde entonces los prototipos con los que han desarrollado sus diferentes misiones, en las que aplicando el conocimiento y la investigación obtenida a través del departamento que poseen espacializado en el desarrollo de sistemas que propulsados, utilizando únicamente como energía la obtenida a partir de la obtención de fuentes renovables (principalmente solar), han cosechado numerosos éxitos, demostrando que se puede concebir un futuro mas o menos inmediato en el que los aviones que surcan el cielo no lo tracen con estelas, pudiendo sustituir los caros y contaminantes combustibles por energía verde.

Recién anunciada su ultima y mas transcedental misión, programada para 2.013  no tiene nada que ver con las misiones realizadas hasta ahora. Consistentes la mayoría en la consecución de trayectos trazados sobre territorio europeo (cabe recordar que su sede central esta en Lausanne Suiza), de corta y media distancia en las que se empleando avionetas adaptadas con sistemas solares. 


Ahora el equipo formado por Piccard y Borschberg se han marcado como reto cubrir la distancia entre los dos océanos que flanquean los Estados Unidos, en un único vuelo sin escalas entre las ciudades de San Francisco (bañada por el océano Pacifico) y New York (por el Atlántico), utilizando únicamente la energía extraída del sol. Posibilidad que hasta su anuncio constituía una entelequia y que de consumarse con éxito, supondría la antesala para los preparativos de lo que seria la primera al vuelto de un vuelo sin escalas, utilizando como única fuente de energía, la producida gracias al sol.

Se preve que este primer vuelo transcontinental tendrá una duración de aproximadamente veinte horas interrumpidas en las que se alternaran en su tripulación Piccard y Borschberg. Contando en todo momento con la asistencia
de un nutrido equipo humano de personal técnico especializado, que alertara de cualquier posible incidencia que pueda suceder a lo largo de la travesía.

En el aspecto técnico el avión cuenta con con la incoporación de mas de 11.500 células solares en las alas, capaces de suministrar energía a sus cuatro motores de diez caballos de fuerza cada uno. El fuselaje del avión presenta una envergadura equiparable a la de un Airbus A340, pero sorprendentemente sólo pesa mil seiscientos kilos, poco que una furgoneta de reparto, Alcanzando una velocidad de setenta kilometros hora,  consumiendo aproximadamente la misma misma energía que una motocicleta.


Adrian Smith + Gordon Gill Architecture - Chengdu Tianfu Great City,


China es un gigante en pleno desarrollo que ofrece grandes oportunidades, pero que también suscita muchas incertidumbres, la migración de una economía controlada por el estado a un modelo mixto, en el que las recetas capitalistas y de libre mercado marcan el rumbo. Están  provocando un enorme crecimiento de su economía, pero también enormes desequilibrios y medio ambientales.

Estas secuelas ya son perceptibles en las grandes urbes chinas como su capital Beijing, Shangai o Hong Kong, por citar tres ejemplos conocidos, que han experimentado un desarrollo urbanístico caracterizado por el caos y la nula planificación en el desarrollo de equipamientos y servicios, que eviten el deterioro de la calidad de sus residentes.

Para tratar de corregir esta adversa situación, las autoridades están volviendo aplicar políticas que partiendo de la planificación urbanística, desarrolle proyectos en los que se armonicen el modelo de consumo occidental con la utilización de herramientas medioambientales que reduzcan el impacto ecológico desarrollando un modelo mas sostenible.


Promovido Beijing Vantone Real Estate Co., Ltd., el plan maestro del distrito de Chengdu Tianfu ampliara su termino municipal con un nuevo barrio, que  supondrá una intervención de terreno equivalente a una superficie de 1,3 kilómetro cuadrado. En el que se construirán viviendas para 30.000 familias, lo que supones mas de 80.000 personas.



Diseñada por el estudio Adrian Smith + Gordon Gill Architecture, Great City sera cuando este finalizada supondrá la reducción de energía y las emisiones de carbono asociadas a la expansión suburbana. Para eso se ha partido de un modelo geométrico, en el que la construcción de las viviendas y los equipamientos comerciales, sociales, culturales y terciarios se concentrarían en una corona circular, delimitada por un triángulo verde, donde parques y zonas verdes se alternaran con instalaciones deportivas, convirtiéndose en el pulmón verde de la ciudad.

Gracias a las técnicas de construcción ecológica y el uso de energías renovables, se pronostica una reducción de de energía de hasta un 48 por ciento y un 58 por ciento menos de agua, comparandolo con el tamaño de una población similar. La distancia desde cualquier punto de la ciudad a  otro lugar supondrá una caminata de 15 minutos, eliminando la necesidad para la mayoría de los automóviles

Great City resuelve la relación entre la alta densidad vida urbana y el desarrollo sostenible, conectando la red de senderos peatonales que recorren corredor verde y las tierras de cultivo circundantes. Las redes de infraestructura pública y movilidad incluyen servicio de transporte eléctrico, y carriles bicis. Como se trata de na ciudad principalmente peatonal, sólo la mitad del espacio se asigna a los vehículos motorizados, todas las unidades residenciales se encuentra a un paseo de dos minutos de un parque público.



Caleb Charland - La luz de la fruta


Todos conocemos la propiedades energéticas de los alimentos, tanto en términos dietéticos como el uso de diferentes cultivos para la producción de bio-diesel. Pero lo que nos revela el fotógrafo Caleb Charland con su serie es la facultad de las frutas y verduras para producir electricidad. 

Sus proyectos fotográficos relacionados con la electricidad, el fuego y el magnetismo, experimentan con serie de fuentes de energía alternativas creadas a partir de frutas, monedas, e incluso vinagre para alimentar diodos LED, con lo que consigue fotografías larga exposición, invirtiendo en cada sesión hasta catorce horas. 

Las baterías orgánicas extraen la energía, utilizando como filamentos semiconductores cables de cobre, enlazados a clavos galvanizados recubierto de zinc. Los electrones fluyen desde el electrodo de zinc (donde el zinc reacciona), llegando a producir alrededor de 5 voltios, alimentación de un LED durante varias horas.


"Hay una energía vibrando en el espacio existente entre nuestra percepción del mundo y el potencial que la mente percibe para nuestras invenciones. Esa energía es el origen de todo arte y toda ciencia verdadera, genera momentos sorprendentes que nos permiten sentir lo extraordinario en lo cotidiano."

Caleb Charland se crió en una zona rural de Maine (EE.UU.) y pasó parte de su infancia ayudando a su padre en su empresa de reformas, y de ahí surgió parte de su curiosidad y de su capacidad para la utilización de los materiales de forma creativa.

Caleb además, combina su curiosidad científica con la creatividad fotográfica para captar imágenes de objetos cotidianos que interactúan con las fuerzas físicas fundamentales. El resultado es a la vez estético y didáctico. 

 

Células solares fabricadas con virus modificados



Una de las características positivas que presentan las energías renovables, es que es una tecnología que ofrece múltiples posibilidades de obtener energía de forma limpia y barata, criterio que se puede trasladar al terreno de la investigación. Donde las combinaciones muestran escenarios que casi superan las tramas de los relatos mas arriesgados de ciencia ficción. 

¿Os imaginais que un día se comercialicen placas solares con elementos orgánicos?. Desarrollado por los estudiantes del  Instituto Tecnológico de Massachusetts (MIT) Hyunjung Yi y Xiangnan Dang, coordinados por la profesora Angela Belcher han conseguido desarrollar un sistema fotovoltaico híbrido compuesto por grafeno y un virus modificado.

Los investigadores han utilizado un virus modificado genéticamente para producir estructuras que mejoran la eficacia de la célula solar en alrededor de un tercio, encontrando una manera de hacer mejoras significativas en la eficiencia de conversión de energía de las células solares utilizando un virus diminuto para realizar trabajos de montaje detallado a nivel microscópico. 


Utilizando una versión genéticamente manipulada de un virus llamado M13 han podido controlar la disposición de los nanotubos de carbono adheridos a estructuras de carbono, que conforman las células solares de modo que el transporte de electrones sea más eficiente y por tanto se produzca más electricidad 
en una superficie de nanotubos separados de carbono.

Los fotones solares golpean un material captador de luz en una célula solar, que libera electrones que pueden producir una corriente eléctrica. La investigación de este nuevo estudio se basa en los hallazgos de que los nanotubos de carbono pueden mejorar la eficiencia de captura de electrones de la superficie de una célula solar.

Lo que han observado los investigadores es como el virus M13 realiza una función reguladora evitando la fricción de los dos tipos de nanotubos (los semiconductores y los cables) que conforman la estructura de las celdas solares,  facilitando el ciclo semiconductor de los electrones, experimentando un aumento de la eficiencia de hasta un 30 por ciento, del 8 al 10,6 por ciento.

Los virus en realidad realizan dos funciones diferentes en este proceso. En primer lugar, poseen proteínas cortas llamadas péptidos que pueden unirse fuertemente a los nanotubos de carbono, manteniéndolas separadas entre sí. En segundo lugar cada virus controla entre cinco y diez nanotubos, usando unas 300 proteínas.

Además, el virus se ha diseñado para producir un recubrimiento de dióxido de titanio (TiO2), un ingrediente clave para el tinte de las células solares sensibilizadas, sobre cada uno de los nanotubos, poniendo el dióxido de titanio en las proximidades de los nanotubos transportando los electrones.


La investigación  financiada por la compañía italiana Eni, a través de MIT Energy Initiative’s Solar Futures Program. El equipo que utilizo anteriormente versiones modificadas del mismo virus para mejorar el rendimiento de las células, sin embargo el método utilizado para mejorar el rendimiento de la célula solar es el mismo, reduciendo los costes de fabricación y producción de energía. 

DNV KEMA Energy diseña SUNdy, un isla solar hexagonal en el mar


El medio oceánico esta suponiendo una revolución desde el punto de vista de producción energética, la fuerza de las olas y la capacidad de las corrientes marinas son solo dos de los ejemplos de las tecnologías renovables, con capacidad para sustituir el monopolio de las energías de origen fósil y contribuir a la tan necesaria diversificación energética.

Pero el océano no solamente reune las condiciones intrínsecas para producir energía verde, sino que además se ha revelado como una excelente plataforma para instalar explotaciones renovables, que tradicionalmente se consideran propias de tierra firme como la tecnología eólica o mas recientemente la solar.

El ultimo proyecto que viene a confirmar el potencial del medio marítimo como medio para instalar parques fotovoltaicos, es el desarrollado por la compañía  DNV KEMA Energy, que pretende producir energía solar en ultramar desplegando grandes instalaciones de forma hexagonal formada por células fotovoltaicas de alta eficiencia.

Denominado SUNdy, se trata de unidades flotantes cuya matriz sumarian matrices, por un total de 4.200 paneles, formaría una isla solar del tamaño de un estadio de fútbol, capaz de generar 2MW. Varias islas conectadas entre sí podrían constituir un campo solar de 50 MW o más, capaz para producir suficiente electricidad como para cubrir la demanda 30.000 personas.

La clave para crear una estructurada funcional reside en la selección de los materiales, que se han utilizado en la fabricación de los módulos solares,  más ligeros que los módulos tradicionales basados ​​en vidrio, lo que les permite ondular con la superficie del océano, con eficiencias cercanas a las de silicona cristalina.

Creados por el departamento de innovación de DNV y el Centro de Tecnologías Limpias en Singapur. El comportamiento de este material es más bien como una tela de araña. Modular y dinámica, los rendimientos son compatibles con la estructura de las olas, soportando importantes cargas externas que actúan sobre ella. 

Uprise Energy - Portable Power Center (PPC), turbina eólica modular de gran capacidad


Soluciones energéticas que utilicen tecnología dirigidas al ámbito domestico existen muchas, (en NQ hemos tenido la oportunidad de describir unos cuantos). Ver prototipos de aregenoradores eólicos incorporados al mobiliario urbano cada vez es mas usual, hecho que modifica el paisaje urbano y mejora el medio ambiente. Pero lo que ha desarrollado la star-up Uprise Energy con sede en San Diego (California), es un producto realmente innovador dirigido a cubrir las necesidades de pequeñas comunidades de vecinos, explotaciones agricolas o medianas empresas, de forma rápida, eficiente y limpia.

Portable Power Center (PPC) innova en este sentido al proporcionar en una unidad autónoma que se pliega dentro de un contenedor de transporte, siendo remolcado   comodamente al lugar donde finalmente se ubicara. Provisto de una turbina de 50 kilovatios (kW), produce electricidad suficiente para suministrar electricidad a una media de 15 hogares.

Con vientos de 12 mph (unos 20 km / h) de velocidad, incrementándose el numero de beneficiarios hasta 70 hogares con velocidades de 20 mph (32 km / h). Cada uno de las turbinas mide 21 pies (6,5 metros) de largo, y cuando operativa, la altura total de la máquina es de alrededor de 80 pies (24 metros), con un peso de aproximadamente 12.000 libras (5.300 kg).

La (PPC) incorpora un sistema informatizad a bordo que controla los patrones locales del tiempo y se ajusta para capturar el viento, girando un total de 360 ​​grados sobre su eje. El sistema ECS ajusta la frecuencia de las palas y la velocidad, y si el viento es demasiado fuerte, para el rotor protegiendo el mástil para evitar daños. 

La turbina se ha optimizado para producir energía en condiciones de viento reducido, la energía adicional se puede almacenar en una variedad de formulas, incluyendo la conversión de aire-agua o de biomasa a hidrógeno.Cuando la energía eólica supera a la demanda, la energía se almacena. Cuando la intensidad de viento es baja o moderada, la energia almacenada en las baterías se inyecta en la red garantizando el suministro.


El costo de la máquina, así como gastos de operación y mantenimiento durante un ciclo de vida de 20 años, a un promedio de velocidad del viento de 12 mph equivaldrá a un costo de energía de 10 centavos de dólar por kilovatio-hora. Con condiciones de viento mas intensa se reducirá los costos de energía, cayendo has 3 centavos de dólar por kWh producido.

Se estima que la fabricación, traslado, puesta en funcionamiento y mantenimiento anual del sistema PPC por unidad rondara los $ 240.000 unos 183.000 EUR.