Mostrando entradas con la etiqueta energías renovables. Mostrar todas las entradas

Fabrican células solares utilizando puntos cuánticos


No es la primera vez que se intenta una tecnología basada en puntos cuánticos en la búsqueda de aplicaciones en el campo de las energías renovables mas concretamente en el de la solar fotovoltaica. Desarrolladas por el departamento de Departamento de Ingeniería Eléctrica y Ciencias de la Computación (EECS) perteneciente al MIT.

Han conseguido fabricar células solares a temperatura ambiente, y cuya tasa de eficiencia presenta una tasa de eficiencia que oscila entre un 30% y un 50%. Lo que supone una reducción de costes relativos a su fabricación aumentando los beneficios debido a su capacidad de captación. 

Los paneles de silicio que respresentan la inmensa mayoría de los que a día de hoy están disponibles en el mercado a disposición del consumidor. Requieren para su elaboración de complejos procesos termo-químicos por lo que precisan ser sometidos a elevadas temperaturas para que adquieran sus cualidades fotoconductiva produciendo electrones, lo que eleva significativente sus costes.

Lo que han conseguido el equipo dirigido por el estudiante doctorado Joal Jean, es fabricar células solares a temperatura ambiente. Para eso han utilizado una placa formada por un bosque de nanocables de oxido de zinc, a la que se ha bombardeado con puntos cuánticos.

Debido a la rección producida estos puntos cuánticos son capaces de absorver un rango de luz mas amplio de la longitud de onda. Lo que provoca un aumento en la tasa de eficiencia en la producción de energía de origen solar. Mediante el uso de nanocables de óxido de zinc, han creado una célula solar que es lo suficientemente gruesa como para absorber la luz de manera eficiente, pero también lo suficientemente delgada para ser semiconductora.

El uso de un proceso de crecimiento ascendente con el objetivo de cultivar los nanocables y la infiltración con puntos cuánticos plomo-sulfuro produce un aumento del 50 por ciento en la corriente generada por la celda solar, y un aumento del 35 por ciento en la eficiencia general. 


Publicado en la edición en linea de Advanced Materials, en la edición de Mayo de este año. Desde entonces ahora cuando diferentes compañias han mostrado su interés por desarrollar un prototipo basado en puntos cuánticos que se pueda fabricar a escala industrial.

Moradavaga - Swing, un columpio que produce energía con el balanceo del cuerpo


Situada en la plaza del Centro Cultural de Güimaraes en Portugal. La instalación Swing cumple tanto una función estética como otra relacionada con la produccion de energía de origen cinética. 

Equipada con puestos donde el usuario puede columpiarse o pedalear a modo de bicicleta estatica. Pudiendo elegir  entre pasar un momento lúdico o ejercitarse pedaleando generando electricidad que se destina a cubrir la demanda del mobiliario próximo. 

Realizada por el estudio de diseño Mora da Vaga. La instalación expuesta en el marco del programa de actividades de la Capital Europea de la Cultura, que a lo largo de todo este año 2.013 se esta celebrando en la ciudad lusa. 


El diseño combina la tecnología que le permite ser autónoma energéticamente y los materiales orgánicos en una propuesta integral. Que integrá en una misma solucion componentes sociales y estrategias de economía circular en el paisaje urbano humanizandolo.


Basada en el principio de balanceo para producir electricidad, Swing es también un homenaje a la riqueza del patrimonio industrial de Guimarães. El cual se refleja en el diseño de la instalación en la que sus dispositivos mecánicos y sonidos evocan los que se producen en las fábricas de la ciudad. 


La estructura esta fabricada con palets de madera reutiliza bles. Oculto en los columpios, el mecanismo y la batería donde se almacena la energía, se incluyen de manera discreta en su estructura. La estructura está fijada con cuerda de cáñamo tradicional, vigas de madera, cadenas de bicicleta, ruedas, dinamos y luces completan los materiales utilizados en la instalación dándole un aspecto solido.



SKWID, turbina flotante híbrida entra en funcionamiento en Japón

A comienzos de este mes entro en funcionamiento la primera instalación fotovoltaica flotante del mundo, construida en una ensenada aledaña al puerto de la isla en Kagoshima en Japón. El parque de solar de Kyocera y del que anunciamos el proyecto en Nomada Q, cuando este a pleno rendimiento producirá 70 megavatios de energía que cubrirá las necesidades de 20.000 familias.


Anunciado por la compañía Mitsui, su departamento de innovación ha presentado los resultados de su primer prototipo híbrido marino. Las balizas de dos cuerpos operan tanto en superficie como debajo del mar, aprovechando tanto la energía eólica que se produce como consecuencia de las corrientes de viento, como de las corrientes submarinas.

Las plataformas flotantes presentan un volumen idóneo con el que proporcionar energía ilimitada, de origen verde y económica. A las cientos de pequeñas poblaciones que salpican la linea de costa y que debido a su cercanía a la central de Fukishima, se vieron afectadas por cortes constantes en el suministro eléctrico.

Las turbinas SKWIB acrónimo de (Savonius Keel Aerogenerador Darrieus) es un proyecto que se encuentra actualmente en su ultima fase ensayo, antes de que entre en funcionamiento en diferentes puntos de la costa. Que debido a su patrón climatológico presenta las mejores condiciones para que su rendimiento sea óptimo.


La turbina omnidireccional gira independientemente de la dirección del viento. Debido a la ubicación del generador, el sistema tiene una excelente estabilidad con un bajo centro de gravedad, así como una excelente capacidad de mantenimiento con fácil acceso. El área barrida rectangular atrapa el doble de viento en comparación con el área circular de barrido de aerogeneradores onshore típicos con el mismo diámetro y es por lo tanto capaz de ofrecer el doble de potencia en una sola instalación.


Hyperloop, tren de alta velocidad solar


El estado de California esta considerado en términos económicos como la octava potencial mundial, este hecho requiere contar con una gran infraestructura aero-ferroviaria que articule y facilite la movilidad de mercancías y pasajeros. La realidad sin embargo nos revela que a pensar de contar con una extensa red ferroviaria que conecta las grandes ciudades de la costa oeste como L.A., San Francisco, Portland o San Diego.

Su antigüedad y la escasa inversión realizada en el ultimo medio siglo para su conservación y mejora tecnológica, la ha convertido en un servicio de transporte con cada vez menos demanda por parta de los usuarios y de las grandes compañias de distribución de mercancias. 

Un consorcio dirigido por Elon Musk el co-fundador de PayPal, SolarcityTesla y SpaceX, anunciado el proyecto Hyperloop, mediante el que pretende implantar una nueva tecnología, que según sus palabras podría revolucionar el medio de transporte terrestre del ferrocarril, 150 años después de que entrara en marcha la primera locomotora de vapor.

En la actualidad el trayecto que une las ciudades de Los Angeles y San Francisco, que cubre una distancia de poco mas de 450 kilometros, se invierte en su recorrido un tiempo equivalente que supera en algunos servicios las tres horas, tiempo que se reduciria a la nada desdeñable cifra de 30 minutos.

Hyperloop que supondría una inversión de 6.000 millones de dolares, estaría muy por debajo del desembolso final que supondría la recién anunciada construcción de linea de alta velocidad, que uniría la capital del estado con Sacramento y San Francisco, proyecto que cuenta con un presupuesto inicial de 68 billones de dolares.

El proyecto Hyperloop esta basado en una tecnología similar a la que hay detrás de la iniciativa de la compañía ET3, del que ya dimos cuenta en su momento en NQ, y que acaba de anunciar que iniciaran los primeros ensayos de su cápsula propulsada por levitación magnética a finales de 2.013. 

La diferencia con Hyperloop estriba en la fuente de energía que emplearía, en este caso la idea planteada por parte de su equipo de ingenieros es usar la energía solar como acelerador y conductor de la unidad de propulsión, con la que se lograría doblar la velocidad de los aviones comerciales que vuelan en la actualidad.  
 

IBM Solar Collector aprovecha la energía de 2000 soles aplicando altas densidades


Desarrollada por el departamento de soluciones energéticas sostenibles de la multinacional IBM, el nuevo modelo energético basado en un sistema de energía fotovoltaica de alta concentración HCPVT

Es un innovador prototipo solar que utiliza una tecnología de refrigeración liquida denominado TIC, el mismo que se utiliza  para acelerar el enfriamiento de ordenadores de elevado procesamiento de datos. 

El concentrador solar utiliza componentes de bajo coste y produce electricidad a partir de procesos térmicos. Normalmente, los discos parabólicos concentran los fotones producto de la radiaccion solar para generar calor. Con este dispositivo, IBM y sus socios utilizaron un plato  de concentración solar que proyecta sobre una matriz fina de células solares de triple unión de alta eficiencia.

Produciendo energía a partir de luz solar equivalente a la concentración a la energía contenida en 2.000 soles. Lo más interesante de este sistema por lo tanto es su alta eficiencia en términos de captura de radiación y producción de energía a bajo coste.

El secreto de esta elevada eficacia está en la enorme densidad de células receptoras de cuantos solares por centímetro cuadrado que albergan cada celda. Lo que permite metabolizar muchísima más radiación solar transformándola en energia.


Y en la diferencia que presenta la superficie, si en un panel convencional por convención es plano, en un sistema de concentración utiliza una lente concava concentrar la misma radiación solar sobre una célula fotovoltaica más pequeña. 


Este concentrador de gran escala podría proporcionar 25 kilovatios de potencia por cada celda. Los ingenieros de IBM construyeron un sistema de refrigeración con tubos de sólo unas pocas micras  que facilitan la circulación  del agua disipando el calor. 


Con este método se logra recuperar mas del 50 por ciento del calor residual, añadiéndose al stock de producción. Dirigidos por el ingeniero Bruno Micheleste modelo en lugar de cristal de espejo en el plato concentrador utiliza láminas de hormigon presurizado. 

Debido a esta combinación de mejoras tecnológicas el costo es de 10 centavos de dólar por kilovatio hora. Presupuesto que en regiones desérticas que tienen mas horas de sol tales como en el Sahara en el norte de África se reduciría aun mas.  

El plato está controlado por un sistema de seguimiento que se mueve según la orientación del sol. Los rayos del sol se reflejan en el espejo y los receptores que contienen las celdas fotovoltaicas de triple unión, cada una con capacidad para  convertir de 200 a 250 vatios proporcionando 25 kilovatios de electricidad. 

La técnica de enfriamiento directo esta inspirado por el sistema de  circulación sanguínea ramificada del cuerpo humano y ya ha sido utilizado para enfriar ordenadores de alto rendimiento como el Aquasar

El sistema también será capaz de producir agua dulce mediante un sistema de destilación que vaporiza y desaliniza hasta cuarenta litros cada hora mientras genera electricidad. A la vez proporcionara aire acondicionado por un refrigerador de absorción de accionamiento térmico que convierte el calor a través de gel de sílicio.

La investigación ha sido financiada con un presupuesto de 2,4 millones de dólares canalizados a través de un consorcio formado por Comisión Suiza para la Tecnología y la Innovación, la propia IBM Research, y la compañía suiza Airlight Energy


JUMP INTO THE FUTURE:

El día 10 de octubre de 2018 se anunció la puesta en marcha del proyecto POWERTREE, alta Concentración Fotovoltaica para Entornos Urbanos en Madrid. En la mesa de trabajo previa se revisaron detalles del programa y de la colaboración entre los miembros que componen el consorcio para el buen desarrollo del mismo. 

El consorcio estaba coordinado por la empresa BSQ Solar, fabricante de sistemas de alta concentración fotovoltaica basado en la ciudad toledana de Yeles en España, y además de la participacion del Instituto de Sistemas Fotovoltaicos de Concentración (ISFOC).

Cuyo objetivo principal es desarrollar, evaluar y validar un sistema de alta concentración fotovoltaica diseñado, en cuanto a especificaciones y funcionalidades, para ser integrado en entornos urbanos. La alta concentración fotovoltaica es la tecnología solar de generación eléctrica que proporciona la mayor densidad de energía por unidad de superficie de suelo ocupado. Y por ello es especialmente prometedora para ser empleada en los entornos urbanos.

El equipo está conformado por Lorenzo Olivieri, especialista en energía solar fotovoltaica, César Bedoya, specialista en sostenibilidad y Arquitectura bioclimática, David Mencías, especialista en estructuras, Francesca Olivieri, especialista en eficiencia energética, Valentina Oquendo, especialista en arquitectura sostenible, Adán Sánchez, especialista en desarrollos tecnológicos, y Javier Tejera, especialista en arquitectura textil.


Belatchew Arkitekter - Strawcraper, la historia de cómo las energías renovables hubiera permitido que se finalazara el edificio mas alto de Suecia


En 1.996 se finalizo el edificio mas alto de Estocolomo en Suecia. El diseño original del mismo firmado por el arquitecto Henning Larsen contemplaba en principio la contrucción de un inmueble de cuarenta alturas.

Suficiente altitud como para proporcionar al Söder Torn la categoria de rascacielos, pero debido a la normativa de edificación de la ciudad. Que limitaba la construcción en vertical estableciendo una altura maxima, se tuvo que modificar ante la alternativa de no llevarse a cabo.

Diecesiete años después este marcó normativo municipal se volvió más flexible permitiendo ampliar las veintiseis alturas actuales, añadiendo las catorce que faltan. Siempre y cuando el diseño cumpla con determinados requisitos tanto esteticos como funcionales. 


Este resquicio en la normativa lo aprovechado el estudio local Belatchew Arkitekter, para rediseñar el proyecto original, convirtiendo parte del edificio en un enorme aerogenerador eólico. Solución energética de origen renovable con el que estima que se conseguirá su autonomía energetica.

Ademas de producir energia a partir de un sistema basado en la piezoelectricidad, lo que permitira que las autoridades representantes municipales puedan conceder los permisos necesarios para que se continue con la construccion. Concesión que se lograr gracias a la incoporación al proyecto original de sistemas basados energias renovables.


La piezoelectricidad trabaja a través de la compresión de cristales termodinamicos, que se encuentran dentro de los ventanales que recubren el edificio. Al cubrir la fachada exterior con millones con esta solución altamente sensible a las variaciones de temperatura exterior.


Este innovador sistema mixto garantiza su eficiencia energética y bio-climatizacion interior, sistema que complementara con las turbinas eolicas instaladas en determinadas áreas de la fachada del edificio.

Un aspecto adicional es el componente estético que se revela cuando el movimiento constante de las vainas que lo recubren, crean un paisaje ondulado en las fachadas. El edificio, de repente cobra vida dando la impresión de ser un cuerpo que está respirando.


El Strawcraper (nombre alusorio a la función del proyecto) es una extensión del Söder Torn transformándolo en una central productora de energía urbana, Belatchew Arkitekter quiere dar al Söder Torn sus proporciones originales y al mismo tiempo explorar nuevas técnicas que podrían crear el parque eólico urbano del futuro. Mediante el uso de tecnología piezoeléctrica.