Mostrando entradas con la etiqueta terapia molecular. Mostrar todas las entradas

El trasplante selectivo de células en el cerebro corrige la obesidad en ratones

Los bajos niveles de los receptores neuronales de una proteína conocida como Leptina, reducen la respuesta en la regulación de la sensación de saciedad durante en la ingestión de alimentos por parte del organismo. Lo que sugiere que podría ser la causa genética de la obesidad severa en humanos y animales. Científicos de la Universidad de Harvard, Hospital General de Massachusetts (MGH)  y el Instituto de Biología Experimental Nencki de la Academia Polaca de Ciencias (Nencki Institute) en Varsovia han demostrado en sus experimentos con ratones que es posible restaurar funciones del cerebro dañadas mediante el trasplante de un pequeño número de nuevas neuronas en un área del cerebro concreto. 

Los resultados de los ensayos preliminares muestran unos resultados prometedores en el aumento de la respuesta de los receptores neuronales de la Leptina, observandose un efecto espectacular en la reducción drástica en el peso de los ratones obesos genéticamente defectuosos y la reducción significativa de los síntomas adversos que la acompañan como la diabetes. Las células trasplantadas a menudo se desarrollan de una manera incontrolada, generando procesos oncológicos. El objetivo de la investigación llevada a cabo durante los últimos cinco años era demostrar que el trasplante de un pequeño número de células podrían restaurar los circuitos neuronales y fortalecer su respuesta neuronal. 


La leptina es una proteína secretada por las células del tejido graso en la sangre cuando está comiendo. Cuando llega al hipotálamo, este reacciona a través de las neuronas específicas, regulando la sensación de saciedad o de hambre, respectivamente. Los ratones deficientes en el receptor de la leptina no conocen la sensación de saciedad. Siendo su peso de hasta dos veces más que en los individuos sanos desarrollando diabetes avanzada. El equipo de la Universidad de Harvard y el Instituto Nencki se centraron en el trasplante de neuronas inmaduras (neuroblastos), estas son las células madre específicas que determinan el desarrollo de las neuronas. 

Células aisladas de pequeñas regiones del cerebro en desarrollo embrionario de ratones sanos fueron utilizadas para trasplantes. Por lo tanto se aumenta la probabilidad de que las células introducidas en los cerebros se transformen en los receptores neuronales o células gliales. Lo habitual es cultivar millones de células para ser posteriormente trasplantadas. En este proyecto, sin embargo, los científicos inyectaron una selección de apenas varios miles de progenitores de neuroblastos en el hipotálamo de los ratones modificados genéticamente. 


Utilizando un microscópio de ultrasonido de alta frecuencia localizaron el área cerebral donde administrar las células. Esta precisión en el tratamiento permitió realizar  microtransplantes selectivos no invasivos con una precisión desconocida hasta ahora. Todas las células trasplantadas se han marcado con una proteína fluorescente, lo que hizo posible su seguimiento en los cerebros de los destinatarios. Observaciones llevadas a cabo de 20 o más semanas después del procedimiento han demostrado que casi la mitad de las células trasplantadas se transformaron en neuronas con morfología típica, la producción de proteínas características de las neuronas normales. 


Mediante la aplicación de sofisticadas técnicas de investigación, fue posible demostrar que toda la gama  de neuronas fueron restauradas en el centro del cerebro restaurando la función  del hambre y la saciedad. Por otra parte, las nuevas neuronas formaron sinapsis comunicandose con otras neuronas en el cerebro, así como reaccionaban adecuadamente a los cambios en los niveles de glucosa en la leptina, y la insulina. La prueba final para la restauración del buen funcionamiento del hipotálamo en ratones fueron las mediciones de peso corporal y los factores metabólicos de la sangre. A diferencia de la población control de ratones obesos genéticamente defectuosos, el peso de los ratones con neuronas trasplantadas era similar al peso que presentan los ratones normales. Produciéndose una mejoría en los parámetros sanguíneos del metabolismo. Muchos intentos se han descrito en la literatura hasta la fecha del trasplante de células en el cerebro. Demostradose que un trasplante muy pequeño de neuroblastos y sus progenitores poseen la capacidad de reconstruir las áreas dañadas del cerebro que regulan diferentes funciones en el organismo.



Debido a lo satisfactorio de los ensayos el autor principal del estudio el doctor Artur Czupryn piensa que es posible introducir nuevas neuronas, que funcionen correctamente, que se integren bien en el tejido receptor nervioso y restaure las funciones cerebrales que faltan. Además, este método al ser de baja invasiva, no dio lugar a la formación de tumores. Los resultados logrados por el grupo de la Universidad de Harvard y el Instituto Nencki definen una línea de investigación prometedora, que podría conducir al desarrollo de terapias de reparación. Este nuevo método podría ayudar, por ejemplo, a eliminar los efectos de un derrame cerebral o mejorar el tratamiento de la enfermedad de Parkinson, que se asocia con una disfunción dentro de un área del cerebro concreta. 

Identifican una nueva diana terapéutica el melanoma metastásico

Investigadores pertenecientes a la UNC Centro de Cáncer Lineberger en Chapel Hill (Carolina de Norte) son parte de un equipo que ha identificado una proteína, llamada P-Rex1, que es clave para el movimiento de las células llamadas melanoblastos. Cuando estas células experimentan un crecimiento incontrolado, el melanoma se desarrolla. 

El melanoma es una de las únicas formas de cáncer que sigue en aumento y es una de las formas más comunes de cáncer en adultos jóvenes. La incidencia de melanoma en mujeres menores de 30 años de edad ha aumentado en más del 50 por ciento desde 1980. Las metástasis son la principal causa de muerte por melanoma. El equipo encontró que los ratones que carecen de la proteína P-Rex1 son resistentes a la metástasis de melanoma. 

Cuando los investigadores examinaron las células de melanoma humano y tejido tumoral observaron que la presencia de la proteína P-Rex1 había aumentado su actividad en la mayoría de los casos - un indicio de que la proteína juega un papel importante en la propagación del cáncer. Sus hallazgos fueron publicados recientemente en la revista Nature Comunications . Los científicos ya conocían que las mutaciones en un gen llamado BRAF eran claves para el desarrollo de melanoma desde hace varios años en que se publicó un documento de colaboración listado de 82 proteínas que parecen ser afectados por esta vía genética.

De esa lista,  se centraron en el estudio de la proteína P-Rex1 en colaboración con la Dra. Nancy Thomas  aquí en la UNC y los investigadores en el Reino Unido miembros del equipo de investigación, Der es Kenan profesor de farmacología en la UNC-Chapel Hill y miembro de la UNC Lineberger abriendo una vía de investigación relavante de cara a desarrollas nuevos tratamientos. Por otra parte este verano se aprobó un fármaco llamado Vemurafenib, que es el primer tratamiento dirigido a la mutación BRAF. Los ensayos clínicos encontraron que el tratamiento ofrece un beneficio significativo de supervivencia. Vemurafenib (PLX4032) es un inhibidor de la quinasa BRAF administrado por vía oral. En ensayos previos de fase I y II pacientes con melanoma metastásico y con mutaciones BRAF V600E aportaron tasas de respuesta de > 50%.

Se cree que vemurafenib puede funcionar, en parte, por el bloqueo de la regulación de la P-Rex1. Los médicos saben de primera mano la frustración de tener opciones terapéuticas muy limitadas para ofrecer a los pacientes con melanoma metastásico. En el laboratorio se analizaron la expresión de la proteína en las células humanas. Señalando que el P-Rex1 juega un papel clave en la metástasis lo que da una mejor comprensión de cómo vemurafenib puede trabajar en el objetivo para el desarrollo de nuevos tratamientos.

Identifican un gen implicado en el aneurisma aórtico abdominal

El tabaquismo y la hipertensión arterial aumenta el riesgo de padecer aneurisma de aorta, pero la enfermedad también se diagnostica en familias en las que ninguno de sus miembros realiza una conducta de riesgo, lo que sugiere que los genes juegan un papel importante. O eso revela un estudio en el que se ha identificado una mutación genética común que aumenta el riesgo de desarrolla aneurismas. El hallazgo podría ayudar a desentrañar por qué los aneurismas se forman en la aorta, la arteria más grande del cuerpo, y que lo hace crecer de tamaño que los hace propensos a la ruptura.
La enfermedad es más común en los blancos, hombres de mediana edad y con frecuencia pasa desapercibido porque los aneurismas rara vez causan síntomas evidentes hasta manifestarse y provocar una hemorragia interna masiva. Las personas que fuman y tienen presión arterial alta tienen un mayor riesgo de sufrir un aneurisma de la aorta abdominal (AAA), pero también se detectan casos en los que no existe una relación causa efecto, lo que podria significar que la herencia genetica juegan un papel importante en su progreso. Un equipo dirigido por Matt Bown, cirujano vascular en la Universidad de Leicester  en el Reino Unido, contrasto el genoma de 1.866 pacientes con aneurismas de aorta abdominal con un grupo formado por 5.534 personas sanas. Las secuencias de genes que aparecieron con mayor frecuencia en los pacientes con aneurisma se confirmaron varios miles de los pacientes que no presentaban síntomas. 



En un estudio publicado en la revista American Journal of Human Genetics , el equipo de describió una variante de un gen llamado LRP1 que era más común en pacientes con aneurismas que en los voluntarios del grupo control. El gen ha despertado el interés de los científicos, ya que no se sabe si están asociados con enfermedad coronaria, presión arterial alta u otras condiciones que afectan al sistemacirculatorio. Las conclusiones revelaron datos como que el 38% de los europeos blancos llevan dos copias del gen mutado LRP1, uno de cada progenitor, lo que eleva a un riesgo del 14% el poder padecer un aneurisma de aorta abdominal. Para los hombres mayores de 65 años, las posibilidades de padecer un aneurisma aumenta entre el 5% y el ​​5,7%. El descubrimiento contribuirá en los esfuerzos por detectar personas con riesgo de los aneurismas de aorta, arrojando luz sobre los mecanismos biológicos que causan la enfermedad. 


Se espera que poder encontrar la manera de detener su crecimiento y evitar que las personas que necesiten una intervención. El gen LRP1 es conocido para regular una enzima llamada MMP9 que rompe las paredes de los vasos sanguíneos, pero no está claro exactamente cómo la variante del gen afecta a los aneurismas. La mutación es mas común entre los europeos que en la población del sureste asiático, que rara vez desarrollan aneurismas, pero es más común entre los afroamericanos, que también son menos afectados por la enfermedad que la población blanca. A principios de 2013, el NHS espera poder examinar a todos los hombres mayores de 65 años de edad en Inglaterra para valorar la (AAA) utilizando ultrasonido. 

La prueba consistirá en controlar el tamaño de cualquier aneurisma por diminuto que encuentren,  que son aquellos cuyos aneurismas presenta al menos un tamaño de 5,5 cm de ancho,  que es cuando se considera que están en riesgo de estallido. Alrededor de 4.000 personas al año en el Reino Unido se someten a cirugía para el tratamiento de aneurismas de la aorta, lo que implica la inserción de un stent cilíndrico en la aorta. Según la Fundación Británica del Corazón, la enfermedad mata a unas 7.000 al año. 

Un estudio revela la importancia de la proteína Kibra en la fijación de nuevos recuerdos

En un ultimo estudio un equipo de investigadores dirigidos por Richard L. Huganir, profesor y director del Salomón H. Snyder Departamento de Neurociencias de la Universidad Johns Hopkins University School of Medicine, y un investigador del Howard Hughes Medical Institute. han descubierto en ratones adultos que el aprendizaje y la memoria se ven profundamente afectada cuando se altera la cantidad de ciertas proteínas en partes específicas del cerebro de los mamíferos.

La proteína,  conocida como Kibra, estaba vinculada en estudios anteriores en humanos a la memoria y la protección contra la enfermedad de aparición tardía de Alzheimer. El nuevo trabajo en ratones, publicado el 22 de septiembre en la revista Neuron, muestra que Kibra es una parte esencial de un complejo de proteínas que controlan el modelado de los circuitos cerebrales, un proceso que codifica la memoria

Existen estudios que han revelado la existencia de poblaciones de seres humanos que son un poco más inteligentes y tienen una mejor recuperación de la memoria que otros, estos rasgos se han localizado en el gen que codifica para la proteína Kibra. Los ensayos realizados por Hungair y su equipo en ratones muestran que ese mismo gen está implicado en el funcionamiento de las sinapsis, esta función es vital para que las neuronas se comuniquen, y en la plasticidad del cerebro, lo que sugiere que podría representa un papel en el proceso de fijación de los recuerdos.

Tras aislar las células del cerebro del ratón y confirmar mediante pruebas bioquímicas que los receptores conocidos como AMPA de los neurotransmisores interactúan en el cerebro. Entonces determinaron que Kibra regula la  actividad de los receptores AMPA desde el interior de las células nerviosas del cerebro facilitando la sinapsis. En primer lugar el se cultivaron la células in vitro extraídas del cerebro de ratones embrionarios durante dos semanas, modificando genéticamente algunas de esas células para producir menos proteínas Kibra.

A continuación, se colocaron las neuronas en una cámara de imágenes y registraron la actividad de los receptores AMPA una vez por minuto durante 60 minutos. Los resultados mostraron que los receptores AMPA se movían más rápido en las células con menos Kibra que en las células de control con cantidades normales de la proteína, lo que demuestra que Kibra regula los receptores de las células cerebrales.

El trabajo cofirma que la actividad de los receptores AMPA en la sinapsis sirve para reforzar las conexiones en el cerebro, señalando que la mayoría de las formas de aprendizaje implican el fortalecimiento de algunas sinapsis y el debilitamiento de las demás, un fenómeno conocido como plasticidad, que es responsable de los circuitos de la escultura en el cerebro que codifican la memoria. Sin Kibra, este proceso no funciona correctamente, y como resultado, el aprendizaje y la memoria están en peligro.  La proteína Kibra ayuda específicamente  a crear un grupo de receptores que se usa para fortalecer las sinapsis durante el aprendizaje.

Por ultimo en un estudio, con rodajas de cerebro de ratones con o sin Kibra, se midieron la actividad eléctrica y la plasticidad sináptica en las células nerviosas, los ratones que carecían Kibra mostraron una menor plasticidad, un fenómeno que se traduce en una menor capacidad de aprender y recordar nueva información. En el trabajo con el cerebro de los mamíferos muestra que Kibra, es necesario para la función normal del cerebro y los procesos asociados con el aprendizaje y la memoria, es importante para regular el tráfico de los receptores AMPA. Además Kibra se ha asociado con la protección contra la aparición enfermedad de Alzheimer temprana, estos estudios pueden ayudar a definir nuevas dianas terapéuticas para el tratamiento de los trastornos de la memoria relacionados con la edad.

Asocian la disminución de neurogénesis en el hipocampo con la aparición del estrés y la depresión

Existen areas cerebrales, donde las neuronas no se reproducen mediante el proceso de neurogenesis. Sin embargo, en otras zonas como el hipocampo, si poseen esta capacidad para regenerar su comunidad neuronal. Esta circunstancia en la línea reproductiva puede ser importante para el aprendizaje y la memoria. Pero sobre todo ha despertado el interés de los científicos debido a la idea seductora, pero controvertida de que podría proteger contra la estados como depresión, la ansiedad y otros trastornos anímicos en general.

Esta hipotesis ha sido corroborada por los resutado de un estudio dirigido por Jason Snyder del Nationaltitute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA, que en ensayos con roedores han encontrado la evidencia de una relación entre la neurogénesis y la depresión (o, al menos, en los comportamientos del ratón que se asemejan a la depresión). Encontró que las nuevas neuronas fortalecen  a los ratones contra el estrés. Sin esta capacidad regenerativa, los roedores son más susceptibles a padecer estados de estrés y se comportan de maneras inusuales que son una reminiscencia de los síntomas depresivos en los seres humanos.

Snyder y su equipo elevo la produccion de neurona en el hipocampo, actuando sobre las células que producen nuevas neuronas. Estimulo estas células con una proteína que les sensibiliza, administrandoles un medicamento llamado Valganciclovir, pero tan sólo en estado reproductivo. sin alterar la produccion en las areas neuronales conlindantes.

El Valnaganciclovir es un medicamento antiviral. Se utiliza para tratar o prevenir infecciones provocadas por ciertos tipos de virus. Se utiliza comúnmente para tratar o prevenir las infecciones de los ojos o del cuerpo por el citomegalovirus (CMV).

Snyder observo como mediante la restricción y transcurrida media hora, se producian niveles más altos de la hormona del estrés corticosterona. Esta reaccion era similar en los ratones normales, pero sus cerebros se acababan restableciendo debido a la produccion de nuevas neuronas. No era así para los ratones que no podían producir nuevas neuronas - sus niveles de corticosterona no se había reducido  media hora después de su liberación. Los niveles de esta hormona poseen un ciclo diario en el que sus niveles oscilan entre bajadas y subidas.

Estos ratones que carecian de la capacidad para crear nuevas neuronas,  mostraban un comportamiento apatico a la hora de afrontar nuevos retos como entrar en una zona desconocida para recuperar un pedazo de comida, aunque padecieran hambre. Este comportamiento sin embargo se transformaba cuando se regeneraba neuronalmente el hipocampo.

Por último los ratones no experimentaban placer en actividades con las que antes disfrutaban - este es uno de los "síntomas característicos" de la depresión. Se le dio a elegir entre  agua dulce o normal, privándoles de las dos, cuando se  les ofrecio a los ratones sedientos. Todos preferían la bebida azucarada al principio, pero sólo aquellos que todavía podian producir nuevas neuronas mantenian esta eleccion. Solo aquellos con un deficit en la producción neuronal bebian tanto agua azucarada como normal.

Los resultados de este estudio se publican después de una intensa década de investigación, que en realidad comenzó cuando se encontró que los antidepresivos estimulan la neurogénesis en ratas. Muchos experimentos con roedores han corroborado estos resultados. La presencia de nuevas neuronas como consecuencia de largos periodos de tratamientos con antidepresivos se relaciono con mejoras en el comportamiento.  Pero hubo excepciones, en algunos casos la neurogénesis no tuvo ninguna influencia en el comportamiento o la eficacia de los antidepresivos.

Según el estudio de Snyder, la eliminación de las nuevas neuronas no provoca ningun efecto sobre el estado emocional. Su importancia sólo se hace evidente en tiempos de dificultades. Por lo menos en ratones, estas neuronas recién nacidas ayuda a controlar la reacción del cerebro al estrés, alterando los niveles de las hormonas que afectan el comportamiento de los animales.

Esta cadena de acontecimientos pueden coincidir, porque el estrés y las hormonas como la corticosterona, también pueden afectar a la línea de producción neuronal en el hipocampo. Al  disminuir la neurogénesis, el estrés se manifiesta puediendo hacer que los animales sean más sensibles al estrés en el futuro. Es lo que predispone a los animales en su comportamiento. Pero si la neurogénesis continúa bloqueada, las cosas van mal, los animales no se recuperan adecuadamente del estrés, y los síntomas depresivos podrían persistir.

¿Puede esto conducir a mejores tratamientos para la depresión? Es demasiado pronto para afirmarlo. Sólo hace unos meses, Amar Sahay de la Universidad de Columbia encontró que el aumento de la neurogénesis no alivia el comportamiento depresivo. Sin embargo si podría ayudar a explicar por qué algunas personas y  son mas vulnerables al estrés, mientras que otros se muestran menos vulnerables

http://www.nature.com/nature/journal/v476/n7361/full/nature10287.html

http://blogs.discovermagazine.com/notrocketscience/2011/08/03/new-neurons-buffer-the-brains-of-mice-against-stress-and-depressive-symptoms/

Nanosensores de transcripcion celular

Los sensores fabricados a partir de moléculas de ADN a medida se podrían utilizar para personalizar los tratamientos contra el cáncer y controlar la calidad de las células madre, según un equipo internacional de investigadores liderados por científicos de la Universidad de California en Santa Bárbara y la Universidad de Roma Tor Vergata. 

La nueva generación de nanosensores pueden detectar rápidamente una amplia clase de proteínas llamadas factores de transcripción, que sirven como interruptores de control maestro en los moleculares. La investigación se describe en un artículo publicado en Journal of the American Chemical Society. El destino de nuestras células está controlada por miles de proteínas diferentes, conocidos como factores de transcripción. Según Alexis Vallée-Bélisle, un investigador postdoctoral del Departamento de UCSB de Química y Bioquímica, quien dirigió el estudio. "El papel de estas proteínas es la lectura del genoma y su traducción a instrucciones para la síntesis de las diferentes moléculas que controlan la expresión célular. 

Los factores de transcripción actúan un poco como la" configuración "de nuestras células, al igual que la configuración de nuestros teléfonos u ordenadores. Lo que nuestros sensores hacer leer los valores. "Cuando los científicos utilizan las células madre y los convierten en células especializadas, lo hacen modificando los niveles de algunos factores de transcripción.

Este proceso se denomina reprogramación celular. Nuestros sensores de seguimiento de las actividades del factor de transcripción, se podrían utilizar para asegurar que las células madre han sido debidamente reprogramadas. También se podría emplear para determinar qué factores de transcripción son activados o reprimidos en las células cancerosas de un paciente, lo que permitiría a los facultativos utilizar la combinación correcta de medicamentos para cada paciente.

Andrew Bonham, investigador postdoctoral en la UCSB y co-primer autor del estudio, explicó que muchos laboratorios han desarrollado métodos para leer los factores de transcripción, sin embargo, el enfoque de este equipo es mas rápido y eficaz. En la mayoría de los laboratorios, los investigadores pasan horas extrayendo las proteínas de las células antes de su análisis. Con los nuevos sensores, se puede medir el nivel de fluorescencia de la muestra lo que facilita la transcripción celular.

Toda la información necesaria para detectar la transcripción de las actividades de los factores en el genoma humano, podría ser utilizado para construir sensores. Una vez activados, estos miles de diferentes factores de transcripción se unen a su propia secuencia específica de ADN. Utilizamos estas secuencias como punto de partida para construir nanosensores mas precisos. El descubrimiento clave que subyace en esta nueva tecnología es la continuación de estudios de los biosensores naturales que se expresan en las células. 

Todas las criaturas, desde las bacterias hasta los seres humanos, controlar su entorno con" interruptores biomoleculares, este proceso se realiza a partir de moléculas de ARN o proteínas. Por ejemplo, hay millones de proteínas de los receptores que detectan las moléculas de olor diferente  cambiando de un" estado de apagado "a un" estado de encendido. La belleza de estos interruptores es que son lo suficientemente pequeños para operar dentro de una célula, y lo suficientemente específicos como para alterar el proceso celular con un resultado concreto. 

Inspirado por la eficiencia de estos nanosensores, el grupo de investigación de Norbert Reich, también profesor en el Departamento de UCSB de Química y Bioquímica, construyo nanosensores sintéticos de conmutación utilizando el ADN, en lugar de proteínas o ARN. En concreto, el equipo de reprogramo tres secuencias de ADN, cada uno reconocía un factor de transcripción diferente, estos interruptores moleculares que se convierten en fluorescentes cuando se unen a sus receptores. Con el uso de estos sensores a escala nanométrica, los investigadores pudieron determinar la actividad del factor de transcripción directamente en extractos celulares simplemente midiendo su nivel de fluorescencia.

Los investigadores creen que esta estrategia en última instancia, permitiría a los biólogos controlar la activación de miles de factores de transcripción, lo que facultara una mejor comprensión de la división celular y los mecanismos subyacentes al desarrollo.