Mostrando entradas con la etiqueta terapia molecular. Mostrar todas las entradas

Graig Venter crea una impresora 3D capaz de imprimir vacunas y genes


Graig Venter quizás sea el genetista mas conocido por la opinión publica, controvertido como pocos, esta considerado como el primero que secuencia la totalidad de los pares de bases de un genoma humano, en concreto el suyo. Su nombre también se hizo famoso a raíz del anuncio hace poco mas de un año, de la sintetización del primer organismo artificial.

Ahora vuelve a sorprendernos con el anuncio de que esta trabajando en el desarrollo de una impresora 3D, por la que imprimir antivirus y secuencias de nucleotidos de ADN. ¿Se imaginan sustituir en los tóners la tinta por serie por secuencias de adenina, citosina,  guanina, timina y uracilo amplificadas por PCR, con los que secuenciar los aminoaciados que forman las proteínas? 

El replicador descrito por Venter o "teletransportador biológico" como el lo define, consistiría básicamente en un un archivo electrónico que expresaría el código de ADN que puede ser enviado por e-mail o móvil. Transferidos a un dispositivo receptor el repertorio de nucleótidos, azúcares y/o aminoácidos se combinarian químicamente para ser impresos en forma de vacunas.

Venter fundador y director general de Genómica Sintética Inc. , una firma genómica comercial, y de la J. Craig Venter Institute (JCVI) , una organización de investigación sin fines de lucro explorar la genómica. Realizo el anuncio del proyecto a través de videoconferencia desde su sede en New York. Su equipo está trabajando a través de escenarios en los que tienen menos de 24 horas para hacer una nueva vacuna con este gadget.

El propósito es poder actuar en situaciones de emergencia como catástrofes humanitarias o escasez de antibióticos. Podemos digitalizar biología, envíelo a la velocidad de la luz y volver a configurar la biología en el otro extremo. El dispositivo podría ser utilizado para administrar vacunas en casos de epidemial. 

Venter no es el primero que intenta imprimir cerámica biológica. Los científicos han tratado de imprimir los vasos sanguíneos, y diferentes órganos con desigual éxito. 
Obviamente, esto sería un dispositivo mucho más complejo de lo que Las impresoras 3D de hoy en día que se utilizan para reproducir piezas de plástico, pero el concepto es potencialmente transferibles a materiales biológicos. 

La bio-impresora, en teoría, podría realizar y distribuir una vacuna rápidamente a cualquier lugar del mundo, a través de un correo electrónico masivo con las especificaciones de la vacuna se podría hacer a una pandemia, o un ataque bioterrorista en cuestión de minutos. se imprimiría vacunando a la población. 

Según los escépticos de materializarse el proyecto y ponerse en practica, se enfrentaría a diferentes peligros potenciales. ¿Qué podría salir mal? por ejemplo nadie puede garantizar que las formulas caigan en manos poco seguras o envíos masivos que terminan tirados en un buen número de filtros de spam. ¿Cómo podemos garantizar el control de calidad? Peor aún, las especificaciones de la vacuna podían convertirse en un arma biológica.

Todo esto esta aun por dilucidar, según Venter los beneficios de la bio-impresora están por encima de los inconvenientes. Si los reguladores permiten que se aplique este enfoque futurista, la salud pública se transformaría pudiendo proporcionar soluciones virales in situ. Sus aplicaciones en la atención sanitaria se podría extender a muchas otras disciplinas sanitarias acelerando la curación de los enfermos y sus diagnostico.

Revierten el envejeciemiento de células cardiacas humanas, activando la telomerasa



El descubrimiento de la relación que existe entre el acortamiento de los   telómeros en la división celular, y el envejecimiento por el efecto de la enzima de la telomerasa. Ha supuesto que se abran nuevas expectativas en el desarrollo de terapias genicas, para el tratamiento de enfermedades consecuencias del envejecimiento celular.

El departamento  de investigación perteneciente al Instituto del Corazon de la Universidad de San Diego, ha conseguido rejuvenecer tejido cardiaco, en pacientes mayores que presentaban insuficiente cardiaca. Utilizando células madres a las que se había practicado una biopsia, con el fin de evaluar su idoneidad.

Las células madre modificadas ayudó a la señalización de la estructura de las células del corazón facilitando la actividad de la telomerasa en la regeneración de los telomeros. Los investigadores modificaron las células madre en el laboratorio añadiendo PIM-1, una proteína que promueve la supervivencia celular y el crecimiento. El estudio firmado por Sadia Mohsin, Ph.D. fue presentado en Basic Cardiovascular de la American Heart Association Ciencias Sesiones Científicas 2012 y publicado en Journal of the American College of Cardiology.

Las células rejuvenecen cuando la actividad de las células madre modificadas mejoran debido a la actividad de la enzima  telomerasa, que evita el desgaste del telómero cromosomico. Los tolmerasa situados en los extremos de los cromosomas facilitan la replicación celular. El envejecimiento y la enfermedad se produce cuando los telómeros se acortan debido a la reducción de presencia de telomerasa. 

Las células humanas que se utilizaron en la investigación fueron probadas unicamente invitro, limitandose al ámbito del laboratorio por razones de seguridad. Los investigadores   entonces ensayaron la técnica en ratones y cerdos, y encontraron que los telómeros crecieron alargamiento, regenerando d-e tejido cardiaco en tan sólo cuatro semanas. 

Hasta ahora las investigaciones realizadas con telomeros habían conseguido ralentizar el proceso de envejecimiento celular, pero gracias a la señalización de PIM-1, se ha conseguido que se incremente la cantidad de telomerasa, revertiendo el proceso de envejecimiento celular orgánico. En este momento sólo existen soluciones farmacologicas, trasplante de corazón o de terapias con células madre con potencial regenerativo limitado, pero PIM-1 la modificación supone un avance significativo para el tratamiento clínico.

Alivian el dolor crónico con el trasplante de células madre embrionarias


El dolor crónico, por definición, es difícil de tratar terapeuticamente, pero un nuevo estudio realizado por científicos de UCSF muestra cómo una terapia con células podrían algún día ser utilizado no sólo para calmar algunos tipos comunes de dolor persistente, sino también para curar las condiciones que dan lugar a ellos. Los investigadores dirigidos por  Allan Basbaum, en su trabajo con ratones, se centró en el tratamiento del dolor crónico que se deriva de la lesión del nervio, que produce el llamado dolor neuropático. 


En su estudio, publicado en la edición del 24 de mayo 2012 en Neuron, los científicos trasplantaron las células nerviosas embrionarias inmaduras que surgen en el cerebro durante el desarrollo y las utilizaron para compensar la pérdida de la función de las neuronas específicas en la médula espinal que normalmente amortiguan las señales producidas por el dolor. Una pequeña fracción de las células trasplantadas sobrevivieron madurando hasta convertirse en neuronas funcionales. 

Las células integradas en los circuitos de los nervios de la médula espinal, la formación de sinapsis y las vías de señalización con las neuronas vecinas. Dieron como resultado, que la hipersensibilidad  causada por el dolor asociado con la lesión del nervio fuera eliminada casi por completo, los investigadores están trabajando en la posibilidad de crear tratamientos potenciales que podrían eliminar la fuente del dolor neuropático, y que puede ser mucho más eficaz que los fármacos que tienen como objetivo únicamente para tratar los síntomas del dolor.

Aunque el dolor y la hipersensibilidad después de una lesión generalmente se resuelven, en algunos casos, persisten tras la lesión, creándose la condición de dolor crónico. Existen muchos tipos de dolor crónico son inducidos por estímulos que son esencialmente inofensivos. El dolor crónico debido a este tipo de hipersensibilidad es a menudo una condición médica debilitante. Muchas personas sufren de dolor crónico neuropático después de un ataque de herpes, años o décadas después de que el virus que causa la varicela haya remitido. 

Actualmente el actual arsenal farmacologico para tratar el dolor crónico se reduce a la gabapentina, un anticonvulsivo utilizado por primera vez para tratar la epilepsia, que ahora es considerado como el tratamiento más eficaz para el dolor neuropático. Sin embargo, es efectivo para sólo aproximadamente el 30 por ciento de los pacientes. 

Los efectos de la gabapentina contribuyen a un estado de hiperexcitabilidad, mejorando la transmisión de mensajes de dolor al cerebro y causan estímulos normalmente inocuos. Las neuronas inhibidoras que están dañadas en la médula espinal provocan la liberación del dolor a traves de una molécula que normalmente transmite señales inhibitorias el neurotransmisor GABA. Una pérdida de la inhibición GABA también está implicada en la epilepsia y puede jugar un papel en la enfermedad de Parkinson. 

La gabapentina no imita el GABA, sino que ayuda a compensar la pérdida de la inhibición que el GABA normalmente proporciona. Colegas  de Basbaum de la UCSF, habían ya  experimentando con el trasplante neuronas inmaduras que hacen que GABA, usen las neuronas trasplantadas para reforzar la señal inhibitoria en modelos de ratón para prevenir ataques de epilepsia y para combatir una enfermedad similar al Parkinson. 

Sin embargo, en aquellos experimentos con las células que se originan en una región del cerebro anterior, denominada colmo eminencia ganglionar medial (MGE) fueron trasplantadas en el cerebro en sí, que es su lugar habitual. Al enterarse de la investigación, Basbaum se interesó en el trasplante de las mismas células en la médula espinal como tratamiento potencial para la pérdida de la inhibición GABA-impulsado en el dolor neuropático. El éxito no estaba asegurado, ya que las células que normalmente no sobreviven fuera de sus entornos naturales dentro de un organismo tan complejo. 

Otro co-autor del estudio de Neuron, UCSF el investigador John Rubenstein, ha logrado importantes avances en la identificación de moléculas que pueden ser manipuladas para dirigir una célula madre embrionaria que tras pasar por las etapas de desarrollo adquieran las propiedades de las neuronas GABA que se derivan de la eminencia ganglionar medial. Esta investigación se encuentra en una fase muy temprana, y aun se esta muy lejos de pensar en ella en ensayos con humanos, pero si representa un método para desarrollar  células similares a las GABA, a partir de células madre embrionarias humanas. 

Como un paso hacia las terapias posibles, el equipo de la UCSF tiene previsto injertar células fetales humanas de la eminencia ganglionar medial, o células derivadas de células madre embrionarias humanas, en un modelo animal de dolor neuropático, para ver si las células humanas también aliviará neuropático crónico dolor. A diferencia de las drogas, las células trasplantadas pueden tener efectos muy especifico, dependiendo de donde se trasplantan. 

De acuerdo con Alvarez-Buylla, un destacado científico, entre los que trabajan para definir las potencialidades de varias células en el cerebro en desarrollo en las diferentes etapas: "Una de las sorprendentes propiedades de estas células de la eminencia ganglionar medial es su capacidad sin precedentes migratorio, lo que les permite para navegar a través de terrenos múltiples dentro del sistema nervioso central, y para luego convertirse funcionalmente integrados con otras células. 

El equipo de la doctora Blasco logra prolongar la vida de ratones hasta en un 24% con un solo tratamiento


Diversos estudios han demostrado que es posible alargar la vida media de organismos de numerosas especies, incluidos mamíferos, actuando sobre distintos genes. Hasta ahora eso ha implicado modificar permanentemente los genes de los animales desde la fase embrionaria, algo que no se plantea en humanos. Investigadores del Centro Nacional de Investigaciones Oncológicas (CNIO).


Liderados por su directora, Maria A. Blasco, han probado ahora que es posible alargar la vida de ratones con un tratamiento que actúa directamente sobre los genes, pero que se aplica a animales adultos, y una única vez. Lo han hecho mediante terapia génica, una estrategia nunca antes empleada para combatir el envejecimiento.    .


Es la primera terapia antienvejecimiento en teoría susceptible de ser aplicable en humanos que actúa directamente sobre los genes


La terapia ha demostrado ser segura y efectiva en ratones. Los resultados se hacen públicos hoy en la revista EMBO Molecular Medicine. Los investigadores del CNIO, en colaboración con Eduard Ayuso y Fátima Bosch, del Centro de Biotecnología Animal y Terapia Génica de la Universidad Autónoma de Barcelona (UAB), trataron a ratones adultos, de un año de edad; y viejos, de dos años. En ambos casos la terapia génica tuvo un efecto “rejuvenecedor”, escriben los autores. Los ratones que fueron tratados al cumplir el año vivieron, de media, un 24% más; los de dos años, un 13% más. Además, la terapia mejoró sensiblemente la salud de los animales, retrasando la aparición de enfermedades asociadas a la edad ‐como la osteoporosis y la resistencia a la insulina- y mejorando los valores de indicadores de envejecimiento, como la coordinación neuromuscular. 
En ambos casos la terapia génica tuvo un efecto “rejuvenecedor”, escriben los autores. Los ratones que fueron tratados al cumplir el año vivieron, de media, un 24% más; los de dos años, un 13% más.  


La terapia génica aplicada se basa en tratar al animal con un virus cuyo ADN ha sido modificado; los genes virales han sido sustituidos por uno de los genes más importantes para el envejecimiento: el de la enzima telomerasa. La telomerasa repara los extremos de los cromosomas, los llamados telómeros, y al hacerlo frena el reloj biológico de la célula y por ende del organismo. El virus, al infectar al animal, actúa como un vehículo que deposita el gen de la telomerasa en las células. Este trabajo “demuestra que es posible desarrollar una terapia génica antienvejecimiento con telomerasa sin aumentar por ello la incidencia de cáncer”, escriben los autores. “Los organismos adultos acumulan daños en el ADN resultado del acortamiento de los telómeros, este trabajo muestra que una terapia génica basada en la producción de telomerasa es capaz de reparar o retrasar este tipo de daño”, añaden. 'Resetear' el reloj biológico.


La telomerasa repara los extremos de los cromosomas, los llamados telómeros, y al hacerlo frena el reloj biológico de la célula y por ende del organismo. El virus, al infectar al animal, actúa como un vehículo que deposita el gen de la telomerasa en las células.  


Los telómeros son estructuras que protegen los extremos de los cromosomas, pero de forma limitada en el tiempo: con cada división de la célula, los telómeros se acortan, hasta que se reducen demasiado y ya no pueden desempeñar su función. Como resultado, la célula deja de dividirse y envejece, o muere. Esto se evita con la telomerasa, que frena el acortamiento de los telómeros o incluso los reconstruye de nuevo. La telomerasa, en esencia, para o resetea el reloj biológico de la célula. El gen de la telomerasa, no obstante, sólo está activo en la mayoría de las células antes del nacimiento; las células del organismo adulto, salvo excepciones, no tienen telomerasa.


La excepción son las células madres adultas y las cancerígenas, que se dividen sin límite y son por tanto inmortales ‐varios estudios han demostrado, de hecho, que la expresión de telomerasa es clave para la inmortalidad de las células tumorales-. Por esta razón, el riesgo de promover el desarrollo de tumores siempre había supuesto un obstáculo a la hora de plantear terapias antienvejecimiento basadas en la telomerasa. En 2007, el grupo de Blasco demostró que es posible prolongar la vida de ratones transgénicos ‐cuyo genoma ha sido modificado de forma permanente en la fase embrionaria- haciendo que sus células expresen telomerasa y, además, genes extra de resistencia al cáncer. Estos animales viven un 40% más de lo habitual y no tienen cáncer. Resultados sin generar cáncer Los ratones tratados con la terapia génica ahora ensayada tampoco tienen cáncer.


Aunque esta terapia no sea aplicada a humanos contra el envejecimiento, al menos a corto plazo, sí puede abrir una nueva vía al tratamiento de enfermedades relacionadas con la presencia en los tejidos de telómeros anómalamente cortos, como algunos casos de fibrosis pulmonar humana.


Los investigadores lo atribuyen a que la terapia comienza cuando los animales ya son adultos, y por tanto no tienen tiempo de acumular el número de multiplicaciones aberrantes necesarias para la aparición de tumores. También es importante el tipo de virus empleado para llevar el gen de la telomerasa a las células. Los autores usaron virus muy seguros, ampliamente usados en terapia génica con un gran éxito en el tratamiento de la hemofilia y enfermedades oculares. Son virus que derivan de otros no patógenos en humanos y que no tienen capacidad para replicarse.

Aunque esta terapia no sea aplicada a humanos contra el envejecimiento, al menos a corto plazo, sí puede abrir una nueva vía al tratamiento de enfermedades relacionadas con la presencia en los tejidos de telómeros anómalamente cortos, como algunos casos de fibrosis pulmonar humana. Más años de vida saludable “El envejecimiento hoy no se considera una enfermedad, pero cada vez más los investigadores tendemos a verlo como la causa común de enfermedades como la resistencia a la insulina o las cardiovasculares, cuya incidencia aumenta con la edad. Si tratáramos el envejecimiento de las células, prevendríamos esas enfermedades”, explica Blasco.

Sobre la terapia ensayada en este trabajo, Bosch señala: “Usamos un vector que expresa el gen de interés [telomerasa] durante un largo periodo de tiempo, y por tanto se realizó un tratamiento único. Esto podría ser imprescindible para una terapia antienvejecimiento, ya que cualquier otra estrategia requeriría de una administración constante del fármaco durante toda la vida del paciente, aumentando el riesgo de efectos adversos”.



Los investigadores han descubierto una proteína que imita los efectos del ejercicio

Un equipo liderado por investigadores del Dana-Farber Cancer Institute han aislado una hormona natural de las células musculares que activa algunos de los beneficios clave sobre  la salud derivados del ejercicio. La proteína, que sirve como un mensajero químico, es un candidato muy prometedor para el desarrollo de nuevos tratamiento para la diabetes, la obesidad y quizás otros trastornos. Bruce Spiegelman, un biólogo celular en el Dana-Farber, es el autor principal del estudio publicado en la versión digital de Nature. El primer autor es el Ponto Bostroöm, un investigador postdoctoral en el laboratorio de Spiegelman.

Llamada la hormona "irisin", después de Iris, como la diosa griega de mensajería. Su descubrimiento es un importante primer paso en la comprensión de los mecanismos biológicos que se traducen el ejercicio físico en los cambios beneficiosos para el organismo, tanto en personas sanas como en la prevención o tratamiento de la enfermedad.  Según el informe, la hormona irisin tiene "efectos de gran alcance"  en el tejido adiposo o tejido graso, - depósitos subcutáneos de grasa blanca que las calorías almacenan el exceso, y que contribuyen a la obesidad. 

Cuando irisin fue inyectado en ratones - los interruptores de la hormona en los genes que convierten la grasa blanca en grasa "buena" marrón se activaron. Esto es beneficioso porque se quema la grasa marrón. Sólo una pequeña cantidad de grasa marrón se encuentra en los adultos, pero los niños presentan niveles más altos. A raíz de los hallazgos de Spiegelman y otros, se ha producido una oleada de interés por las posibilidades terapéuticas de aumento de grasa marrón en los adultos. 

Estimular la producción de grasa marrón con irisin ha demostrado mejorar la tolerancia a la glucosa, una medida clave en la salud metabólica, en los ratones alimentados con una dieta alta en grasas. El descubrimiento no permitirá que la gente pueda evitar ir al gimnasio y fortalecer los músculos al tomando suplementos de irisin, ya que la hormona no fortalece la capacidad múscular. Los experimentos demostraron que los niveles de irisin aumentan como consecuencia de episodios repetidos de ejercicio prolongado, pero no durante la actividad muscular a corto plazo. 

El equipo del Dana-Farber identificó irisin en la búsqueda de genes y proteínas reguladas por un regulador metabólico principal, llamado PGC1-alfa, que se activa por el ejercicio. El grupo de Spiegelman había descubierto PGC1-alfa en una investigación anterior. En la búsqueda de dianas moleculares de irisin aumento la actividad PGC1-alfa en última instancia, determino con precisión su ubicación dentro de la membrana externa de las células musculares. Este descubrimiento va en contra de los estudios realizados de otros científicos que tal proteína se encuentra en el núcleo de la célula.


Parece paradójico que el ejercicio pueda estimular la secreción de una hormona polipeptídica que aumenta el gasto energético. Una explicación para que la expresión irisin aumente con el ejercicio en el ratón y el hombre puede ser que se desarrolló como consecuencia de la contracción muscular durante el temblor. La secreción de los músculos de una hormona que activa la termogénesis adiposo durante este proceso podría proporcionar una más amplia defensa contra la hipotermia. En climas extremadamente fríos, los músculos trabajan duro a través de escalofríos. A su vez el temblor puede enviar mensajes al cuerpo para crear más grasa marrón que regula el calor.

Para probar si el aumento irisin por si solo podía imitar los beneficios del ejercicio, los científicos inyectaron cantidades modestas en ratones sedentarios que eran obesos y pre-diabéticos. Con 10 días de tratamiento, los ratones tenían un mejor control del azúcar en la sangre y los niveles de insulina - de hecho se observo la prevención de la aparición de la diabetes - y la pérdida de una pequeña cantidad de peso. A pesar de que la pérdida de peso era pequeño, los resultados que la hormona puede tener un efecto mayor cuando se administra por períodos más largos. 

No se observaron signos de efectos de toxicidad o efectos secundarios, como fue aventurado por los investigadores, limitando el aumento de los niveles de irisin generalmente producida por el ejercicio. En parte porque es una sustancia natural y debido a que el ratón y las  proteína que generan son idénticas. El siguiente paso es desarrollar  un medicamento basado en irisin rápidamente en los ensayos clínicos en un plazo de dos años. El descubrimiento irisin ha sido licenciado por Dana-Farber exclusivamente para Ember Therapeutics para el desarrollo de fármacos. 

J147 primer fármaco contra la enfermedad de Alzheimer

Un nuevo fármaco candidato puede ser el primero capaz de detener el devastador deterioro mental producido por la enfermedad de Alzheimer, sobre la base de las conclusiones de un estudio publicado en PLoS ONE. Cuando se administra a los ratones con Alzheimer, el fármaco, conocido como J147, mejora de la memoria y previene el daño cerebral causado por la enfermedad. 



El nuevo compuesto, desarrollado por científicos del Instituto Salk para Estudios Biológicos, podría ser probado para el tratamiento de la enfermedad en los seres humanos en un futuro próximo. J147 mejora la memoria en ratones normales y con enfermedad de Alzheimer y también protege al cerebro de la pérdida de conexiones sinápticas, según David Schubert, el jefe del Laboratorio Celular Salk de Neurobiología, cuyo equipo desarrolló el nuevo medicamento. 

En la actualidad en mercado medicamentos específicos la enfermedad de Alzheimer que posean ambas propiedades. Aunque aún se desconoce si este compuesto sea seguro y eficaz en los seres humanos, los investigadores sugieren que el medicamento podría tener un potencial para el tratamiento de personas con Alzheimer.

Se calculan que unos 5.4 millones de estadounidenses sufren de Alzheimer, según los Institutos Nacionales de Salud. Más de 16 millones tienen la enfermedad para el año 2050, según estimaciones de la Asociación de Alzheimer, lo que supone una factura sanitaria de más de $ 1 billón por año. La enfermedad causa una disminución constante e irreversible de la función cerebral, borra la memoria de una persona y su capacidad para pensar con claridad, hasta que son incapaces de realizar tareas simples como comer y hablar, y es en última instancia puede ser fatal. El Alzheimer está relacionada con el envejecimiento y por lo general aparece después de 60 años de edad, aunque en un pequeño porcentaje de las familias tienen un riesgo genético para la aparición más temprana.

Entre las diez primeras causas de muerte, la enfermedad de Alzheimer es la que no  cuenta con un protocolo de prevención, curación o tratamiento que impida la progresión la progresión de la enfermedad. Los científicos no tienen claras las causas de la enfermedad de Alzheimer, que parece surgir de una mezcla compleja de la genética, el medio ambiente y los habitos de vida. Hasta ahora, los medicamentos desarrollados para el tratamiento de la enfermedad, tales como Aricept, Exelon y Reminyl, sólo producen mejoras en la memoria efímera y no hacer nada para frenar el curso global de la enfermedad.

Para encontrar un nuevo tipo de medicamento, Schubert y sus colegas rompieron con la tendencia de la industria farmacéutica de centrarse exclusivamente en las vías biológicas implicadas en la formación de placas amiloides, los depósitos densos de proteínas que caracterizan a la enfermedad. Hasta la fecha, todos los medicamentos basados ​​en el tratamiento de las placas de beta amiloide han fracasado en ensayos clínicos. En cambio, el equipo de Salk desarrolló métodos para el uso de neuronas vivas cultivadas en placas de laboratorio para probar  nuevos compuestos sintéticos que fuesen eficaces en la protección de las células del cerebro contra patologías asociadas con el envejecimiento del cerebro. Con base en los resultados de cada iteración química de los compuestos de plomo, que fue desarrollado originalmente para el tratamiento de las lesiones cerebrales y derrame cerebral traumática, que fueron capaces de alterar su estructura química para que fueran mas eficaces contra el de Alzheimer.
El Alzheimer es una enfermedad compleja,  el desarrollo de la mayoría de las drogas en el mundo farmacéutico se ha centrado en un solo aspecto de la enfermedad - la vía de amiloide, según Marguerite Prior, investigadora asociado en el laboratorio de Schubert, quien dirigió el proyecto junto con Qi Chen, antiguo investigador postdoctoral Salk. Por el contrario, mediante pruebas de estos compuestos en los que viven de cultivos celulares, se puede determinar lo que hacen frente a una serie de problemas relacionados con la edad y seleccionar al mejor candidato que aborda múltiples aspectos de la enfermedad, no sólo uno.

Con un compuesto prometedor en la mano, los investigadores  probaron J147  oral en ratones. Amanda Roberts, profesora de neurociencias moleculares en el Instituto Scripps de Investigación, llevó a cabo una serie de pruebas de comportamiento que mostraron que el fármaco mejoraba la memoria en roedores normales. Los investigadores Salk observaron como J147 impedía el deterioro cognoscitivo en los animales con Alzheimer, produciendo en una proteína llamada factor neurotrófico derivado del cerebro (BDNF), una molécula que protege a las neuronas de las proteinas tóxicas, ayuda a nuevas neuronas crecen y se conectan con otras células cerebrales, y participa en la formación de la memoria.

Debido a la amplia capacidad de J147 para proteger a las células nerviosas, los investigadores creen que también puede ser eficaz para el tratamiento de otros trastornos neurológicos, tales como la enfermedad de Parkinson, enfermedad de Huntington y la esclerosis lateral amiotrófica (ELA), así como el derrame cerebral