Mostrando entradas con la etiqueta robot. Mostrar todas las entradas

Material, la impresión 3D que desafía a la gravedad


Hasta ahora los sistemas de impresión en 3D que están apareciendo, no dejan de ser fuegos de artificio que parecen extraídos de una película de ciencia ficción con escasas posibilidades de poder aplicarse en términos productivos. Sin embargo estamos asistiendo probablemente a una revolución que modificara nuestros patrones de consumo. 

Uno de los sectores donde mas interés esta suscitando la tecnología de impresión 3D, es en el sector de la construcción, la posibilidad de trasladar diseños arquitectónicos del plano original al plano físico utilizando robots que empleando innovadores materiales es tentador. Métodos mas eficaces mas limpios y rápidos de edificación ofrecen un amplio abanico de posibilidades por explotar.

Liderados por Petr Novikov y Saša Jokić, un equipo de investigadores del Instituto de Arquitectura Avanzada de Cataluña (IAAC) en colaboración con el Joris Laarman Studio en Amsterdam han desarrollado una nueva tecnología de fabricación aditiva denominada como MATAERIALMediante el uso de la tecnología de extrusión es capaz de neutralizar el efecto de la gravedad durante el curso del proceso de impresión.

La máquina es esencialmente un brazo articulado que puede crear objetos tridimensionales en cualquier superficie, independientemente de su grado de  inclinación y  superficie ya sea lisa o irregular. Este método facilita la flexibilidad para crear objetos verdaderamente naturales, haciendo curvas en 3D en lugar de capas de 2D. A diferencia de las capas 2D que depositan capas tan solo en superficies solidas  de forma horizontal, las curvas de 3D pueden seguir líneas de tensión exactas de una forma personalizada. 

El material de aspecto viscoso es expulsado a través de la boquilla situada en uno de los extremos  de la manguera. Los polímeros se acumulan recordando los trazados que se realizan con las mangas pasteleras. En este caso el material no se encuentra ni en estado liquido ni solido, siendo la parte mas difícil de todo este delicado proceso de sedimentación. Porque si se solidifica antes de que salga de la boquilla se interrumpirá la trayectoria, pero si se solidifica después de salir de la boquilla se precipitara a la superficie.

Para solventar este problema, se han usado dos polímeros líquidos termoestables cuyos nombres se mantienen en secreto, en lugar de los plásticos que se utilizan en la actualidad, facilitando que la mezcla, se endurezca de forma rápida. Una reacción química entre los dos componentes del polímero termoendurecible hace que el material se solidifique a medida que sale de la boquilla.

Bautizado como el método de "modelado de objetos anti-gravedad", proporciona el tiempo justo para que el material se solidifique pudiendo proyectar cualquier tipo la estructura en el vació independientemente de la orientación en que se apoye.

Material tecnología de la que se esta tramitando su patente también permite un tratamiento preciso del uso del color con el que se desea imprimir. Jeringas con cían, magenta, amarillo y negro permiten colorear, cambiando las proporciones y la personalización del color. 

Los métodos convencionales de fabricación aditiva se han visto afectados tanto por la gravedad y el entorno de impresión: la creación de objetos 3D en superficies irregulares no horizontales hasta el momento ha sido considerados una quimera. Pero mediante el uso de la tecnología de extrusión que representa Material es posible neutralizar el efecto de la gravedad durante el  proceso de impresión. 
.



CIE + ITKE, pabellón biológico realizado por un robot constructivo


Es alentador poder descubrir cada temporada los resultados de los proyectos realizados por Instituto de Diseño Computacional (ICD) y el Instituto de Estructuras de construcción y diseño estructural (ITKE) en Stuttgart. 

Sus pabellones producto de la aplicación de programas de computación ejecutados por prototipos robóticos, están basados en la morfología de estructuras biológicas. Esta combinación de disciplinas convierten  la arquitectura en una actividad dinámica y sumamente excitante. 

Si en el proyecto de 2.011 se inspiraron en la concha de un erizo de mar conocido como Sam Dollar y del que realicemos la correspondiente cobertura que podéis ver AQUI.Para su ultima propuesta han seleccionado como modelo del pabellón instalado en el campus de la universidad de Stuttgart


El exoesqueleto de una langosta y su proceso de crecimiento orgánico formado por capas que están compuestas de capas de quitina, un derivado de la glucosa. Asesorados por estudiantes de biología de la Universidad de Tübingen, estéticamente la forma del pabellón evoca a la de un arácnido. 


Realizado con resina saturada de vidrio y fibra de carbono entrelazado, las capas fueron tejidas siguiendo un patrón informatizado y ejecutado por un brazo robotizado.

El proyecto examina la transferencia de forma biológica y principios materiales de formación del exoesqueleto de los artrópodos (artrópodos) como punto de partida para las formas de nueva construcción en la arquitectura. El enfoque del diseño consistió en mapear la estructura de la fibra basado en el modelo biológico.

Empleando como material constructivo plásticos reforzados con fibra, cuya anisotropía se integra desde el principio en el proceso computorizado de diseño y simulación obteniendo nuevas posibilidades en el ambito de la arquitectura. 

Tras finalizar el proceso de encoframiento se retiro el armazón, dejando el caparazón aparte. El pabellón de ocho metros de ancho por tres de profundidad y tres y medio de altura, a pesar de sus considerables dimensiones la estructura se desplazo con relativa facilidad a su emplazamiento original.
 


El profesor Gerald Loeb crea el primer robot con capacidad sensitiva con inteligencia artificial



¿Qué experimenta un cyborg en términos táctiles? ¿Que sensaciones neurosensoriales posee?, evidentemente ninguna debido a que carece de los mecanismos sensoriales con la interpretar las señales nerviosas. Pero con los sensores adecuados, y el software correspondiente, los robots podrían interpretar la sensación que se produce al tacto o al menos desarrollar la capacidad de identificar materiales por si mismos y de forma consciente.

investigadores de la escuela de Ingeniería Viterbi de la Universidad del Sur de California. Ha publicado un estudio en la edición del 18 de junio de Frontiers in Neurorobotics en la que describen como un robot especialmente diseñado puede superar a los humanos, en la identificación de una amplia gama de materiales naturales. 

De acuerdo con sus texturas, allanando el camino para los avances en las prótesis y robots de asistencia personal. El robot esta equipado con un nuevo tipo de sensor táctil construido para imitar la punta del dedo humano. También utiliza un nuevo algoritmo diseñado para tomar decisiones acerca de cómo explorar el mundo exterior, imitando estrategias humanas. 


Capaz experimentar sensaciones humanas, el sensor también puede calcular la presión que aplica a la punta de los dedos e incluso evalúa las propiedades térmicas de un objeto de ser tocado. Al igual que el dedo humano desarrollado por BioTac sensor, posee una piel suave y flexible sobre un relleno líquido. La piel tiene incluso dispone de huellas dactilares en su superficie.

Lo que eleva su sensibilidad hasta tal punto que puede percibir vibraciones. A medida que el dedo se desliza sobre una superficie con textura la piel vibra según las características que presenta. Estas vibraciones se detectan mediante un hidrófono que hay en el interior del núcleo similar al hueso del dedo. 

El dedo humano utiliza vibraciones similares para identificar texturas, pero el dedo del robot es aún más sensible. Cuando los seres humanos tratan de identificar un objeto a través del tacto, utilizan una amplia gama de movimientos exploratorios en base a su experiencia previa con objetos similares. Un famoso teorema matemático del siglo del XVIII formulado por Bayes Thomas describe cómo las decisiones se toman a partir de la información obtenida del movimiento. 


Hasta ahora, sin embargo, no había forma de decidir qué movimiento exploratorio era correlativo al siguiente. En el artículo, redactado por el profesor de Ingeniería Biomédica Gerald Loeb y el estudiante  recien graduado Jeremy Fishel, se describe una solución para este teorema general bautizado como "Exploración bayesiano".


Diseñado por Fishel, el robot especializado fue adiestrado en la capacitación de 117 materiales, con los que se elaboran los diferentes tejidos que forman parte de los muestrarios de las tiendas de telas. Cuando la articulación testaba un material de forma aleatoria, y después de seleccionar de forma inteligente y haciendo un promedio de cinco movimientos exploratorios, el robot podía identificar correctamente el material correcto en un 95% de ocasiones. 


El BioTac ® es un revolucionario sistema de sensor táctil de SynTouch LLC. El diseño patentado consta de un núcleo rígido rodeado por una piel elástica llena con un líquido con el que se consigue de forma notablemente similar en términos sensitivos la yema de un dedo humano. El BioTac es el primer sensor capaz de detectar toda la gama de la información sensorial que los dedos humanos pueden detectar.

Incorporado estas funciones sensoriales en el dispositivo sin poner un solo sensor en la propia piel. La piel se puede reemplazar fácilmente. Los sensores, circuitos electrónicos y conexiones están protegidos en el interior del núcleo rígido. Loeb y Fishel son socios en SynTouch LLC, que desarrollan y fabrican sensores táctiles para sistemas mecánicos que imitan caracteristicas humanas.

Eccerobot, un robot casi humano


El proyecto Eccerobot, se inicio hace dos años a partir de la creación de un consorcio donde participaban, los departamentos de ingeniería robótica e inteligencia de diferentes universidades europeas. Dotado con un presupuesto de diez millones de euros, el estudio tenia como el desarrollo de nuevos materiales basados en polimeros, y sistemas basados en sensores multimodales, que permitieran crear un robot con capacidades cognitivas y motrices equiparables a las de los seres humanos.


.
Presentado en el el encuentro académico de estudiantes de ingeniería. el desarrollo de Eccerobot está dirigida por especialista en robótica  Owen Holland y  el grupo de investigación de la Fundación de robótica de la Universidad de Belgrado. El prototipo pantropomimético, capacita de;conciencia de la máquina a través de modelos internos. Esto dicho con estos términos puede resultar un tanto ambiguo, pero básicamente en la practica se traduciría en que Eccerobot esta capacitado de para memorizar procesos sensitivos y articular una respuesta acorde con esa situación.

Fabricado con polímero termoplástico y cordones elásticos, que imitan las articulaciones y el esqueleto, permitiendo a Eccerobot, realizar con plasticidad casi humana, muchos de los movimientos psicomotrices que realizamos en nuestro entorno físico, prescindiendo de los elementos tradicionales con los que hasta ahora se habían construido muchos de los cyborg que conocemos, permitiendo a Eccerobot imitar los movimientos y gestos propios de los seres humanos de forma casi idéntica.


Los robots humanoides estándar imitan la forma humana, pero los mecanismos utilizados en este tipo de robots son muy diferentes de aquellos en los seres humanos, y las características de los robots de reflejan esta situación. esto supone severas restricciones a los tipos de las interacciones que estos robots pueden realizar, en el conocimiento que puede adquirir de su entorno, y por lo tanto sobre la naturaleza de su compromiso cognitivo con el medio ambiente.


Durante mucho tiempo hemos estado acostumbrados a la idea del robot humanoide de un robot con dos piernas, dos brazos, un torso, y una cabeza, y con las proporciones y la apariencia externa de un ser humano. ¿Cuál es el problema? La piel. Esta envoltura opaca oculta su contenido de nuestro aparato perceptivo, y nos impide prestar suficiente atención a lo que hay dentro. Por lo tanto, sobrevaloramos su forma y se infravalora su funcionamiento. Sin embargo, cuando lo que hay dentro se revela ante nuestros sentidos inmediatamente y de forma irreversible somos mas conscientes de nuestra verdadera naturaleza física.

El Eccorobot posee huesos, tendones y músculos que reproducen de forma fiel los movimientos humanos, sus articulaciones  están compuestas de termoplástico polimorfo, un polímero de alta resistencia que se ablanda cuando se calienta y por lo tanto puede ser moldeada en formas precisas. unos 80 de los músculos de cada uno dependen de un actuador individual para su movimiento.


El sistema de sensor imita la propiocepción (el propio sentido de la posición de sus propias partes del cuerpo), el procesamiento visual, de audio con sensores de vibración, una unidad inercial y retroalimentación táctil. a lo largo de estos sistemas, los ingenieros buscan  imitar los reflejos humanos y el procesamiento de entrada, por ejemplo la generación artificial reflejo espacio-ocular, que es responsable de la razón por la que un humano puede mover la cabeza mientras lee un libro, sin apartar las visión del texto, pero no mientras mantiene la cabeza inmóvil. Dos cámaras de alta definición con matrices programables de campo permiten el pre-procesamiento y el procesamiento de la información visual. dos micrófonos imitar las características de audio de forma simultánea y acústicas direccionales del oído humano, a pesar de las vibraciones y el impacto de detección a través de acelerómetros ofrecen una fuente adicional de datos.


Las actualizaciones más recientes de Eccerobot implican el desarrollo de más alto nivel del funcionamiento cognitivo, utilizando el aprendizaje por refuerzo como una forma de "enseñar" las nuevas funciones del dispositivo. con una programa de simulación virtual de técnicas de aprendizaje reforzado.