Mostrando entradas con la etiqueta nanotecnología. Mostrar todas las entradas

Nuevo diseño para la batería de iones que almacena 7 veces mas de energía


Las tecnologías limpias cada vez dependen más de las baterías, en particular de las que estan fabricadas con iones de litio. Todo, desde los coches eléctricos, las soluciones de almacenamiento para instalaciones de energía renovable, así como casi todos nuestros gadgets como por ejemplo moviles portátiles utilizan este modelo de almacenamiento. El que debido a su intenso uso ha experimentado una mejoria en las especificaciones que presenta, sobre todo en su capacidad de almacenamiento y durabilidad, inconvenientes que ante las nuevas necesidades la tecnologia actual esta llegando a su limite de su capacidad.

Investigadores del Laboratorio Ambiental de Ciencias Moleculares (EMSL), han desarrollado un innovador prototipo que mediante el uso de nanopartículas de silicio que ala hinchanse aumentan la cantidad de iones de litio que pueden ser almacenados, multiplicando por siete la cantidad de energia que podria llegar almacenar, alargando la vida util hasta cinco veces las actuales. Este avance podría conducir a la fabricación de baterías que no sólo poseen mas capacidad para almacenar mucha más energía, sino que reducen los costes de fabricación  en su fabricación a escala industrial ademas de alargar su vida util, lo que abre un sin fin de posibilidades.
Las propiedades de las baterías de Li-ion, como la ligereza de sus componentes, su elevada capacidad energética y resistencia a la descarga, la ausencia de efecto memoria o su capacidad para operar con un elevado número de ciclos de regeneración, han permitido el diseño de acumuladores livianos, de pequeño tamaño y variadas formas, con un alto rendimiento, especialmente adaptados para las aplicaciones de la industria electrónica de gran consumo. Desde la primera comercialización a principios de los años 1990 de un acumulador basado en la tecnología Li-ion, su uso se ha popularizado en aparatos como teléfonos móviles, agendas electrónicas, ordenadores portátiles y lectores de música

Las baterías de ión litio generan electricidad debido a la circulacion de los iones de litio a través de un electrolito. En una batería completamente cargada, los iones de litio se almacenan en un cátodo, de óxido de litio cobalto (LiCoO2), que es estable en el aire. Cuando está en uso, el flujo de iones de litio flujo desde el cátodo a través de un electrolito en el ánodo,  comúnmente de carbono.

Durante la recarga, los iones son empujados hacia atrás hacia el cátodo donde comienza su ciclo. Los investigadores han construido sobre la tecnología actual, creando un nuevo tipo de ánodo compuesto de nanopartículas de silicio individuales dentro de los depósitos de carbono, como las yemas de los huevos en el interior de la clara. En este nuevo diseño, el flujo  de iones de litio, viaja desde el cátodo a través del electrolito, difundiendose a través de las celdas de carbono, y en el silicio, que puede contener diez veces mas particulas en forma de iones de litio.

Hojas artificiales producen hidrógeno, empleando energía solar


Investigadores del departamento de Dispositivos Fotovoltaicos y Optoelectrónicos de la Universitat Jaume I, de Castellon, dirigidos por el profesor Juan Bisquert, han desarrollado, utilizando componentes basados en tecnología nanotecnologíca, un dispositivo con materiales semiconductores que genera hidrógeno a partir del agua utilizando únicamente la luz solar.

Inspirado en el fenómeno de la fotosíntesis que se produce de forma natural (un proceso por el cual las plantas utilizan la luz solar para transformar la materia orgánica en compuestos orgánicos, liberando la energía almacenada en los enlaces moléculares del trifosfato de adenosina, obteniendo compuestos energéticos, como azúcares o hidratos de carbono). La fotosintesis artificial, que es como se ha denominado al proceso, produce de formas eficiente de hidrógeno a partir de materiales semiconductores y la luz solar constituye un reto crucial para  cambiar de paradigma hacia una tecnología basada en el hidrógeno. 

A pesar de la eficiencia energética del dispositivo todavía no es suficiente para que se considere su comercialización, explorándose diversas vías para mejorar su eficiencia y demostrar que esta tecnología representa una alternativa real para satisfacer las demandas de energía del siglo XXI. El hidrógeno es un elemento muy abundante en la superficie de la Tierra, en combinación con el oxígeno: el agua (H20). La molécula de hidrógeno (H2) contiene una gran cantidad de energía que se libera cuando se quema debido a la reacción con el oxígeno atmosférico.

Con el fin de convertir el agua en hidrógeno, la molécula de H2O debe dividirse en sus componentes esenciales, en este caso utilizando una técnica basada en la utilización de la radiación solar, (sin utilizar combustibles fósiles), y con ninguna otra ayuda, se provocan las reacciones químicas que separan el agua y el hidrógeno de forma similar a las hojas de las plantas. Por esta razón, estos dispositivos se han bautizado como hojas artificiales

El dispositivo se sumerge en una solución acuosa que, cuando se ilumina con una fuente de luz, forma burbujas de gas hidrógeno. En primer lugar, el grupo de investigación utilizó una solución, con un agente oxidante  estudiando la evolución de hidrógeno producido por los fotones. El siguiente desafío, según Iván Mora, miembro del equipo que ha desarrollado la solución, es entender el proceso físico-químico que produce el material semiconductor y su interrelación con el medio acuoso con el fin de agilizar el proceso del dispositivo. 

El desarrollo de la hoja artificial es un gran reto científico debido a la dificultad que plantea la selección de materiales que se utilizan en el proceso, trabajando de manera continua y no en descomposición. El equipo de la Universitat Jaume I es uno de los pocos grupos de investigación a nivel internacional que ha demostrado la viabilidad de un dispositivo de estas características, junto con los laboratorios de América del Norte en el MIT en Boston o NREL en Denver . El líder del grupo de investigación, Juan Bisquert, cree que en comparación con otros dispositivos, el que ha sido desarrollado por su equipo presenta la ventaja de reducir los costos de producción y de una mayor recolección de los fotones incidentes de la luz, utilizándose para la producción de hidrógeno fotones incluso del espectro infrarrojo”.

Desarrollan un satélite solar productor de energía


Si bien la energía solar ha sido durante mucho tiempo considerada como clave para resolver las demandas de energía del planeta tierra, el problema de la eficiencia y almacenamiento supone todavía un handicap, y aunque esta en vía de resolverse, todavía habrá que esperar hasta que madure tecnologicamente. Una de las vías que se están explorando en la actualidad, es la posibilidad de generar energía de origen solar en el espacio, aparentemente esta opción es la mas coherente,  cuanto mas próximo de este de la fuente productora de energía (en este caso el sol) mas intensa sera la radiación, fenómeno que incrementara la cuota de producción. Pero logisticamente se plantea un problema, el transporte de la energía recolectada hasta las plantas de distribución en la Tierra. 

Sin embargo, un equipo de ingenieros de la Universidad de Strathclyde en Glasgow creen poseer  la clave para que la energía solar producida en  una órbita espacial, no plantee grandes dificultades su traslado y consumo en la  Tierra. El equipo está probando actualmente un sistema que actuaría como una plataforma para que los paneles solares, produjera energía aprovechando el máximo espectro solar, permitiendo que sea transferido de vuelta a la tierra utilizando sistemas basados microondas o rayos láser.


Estos 'satélites solares" serían capaces de proporcionar al planeta una fuente inagotable de energía que permitiría, suministraría  de energía a zonas remotas y proporcionar energía a las áreas que son difíciles de alcanzar por medios tradicionales. El doctor Massimiliano Vasile, del Departamento de Ingeniería Mecánica y Aeroespacial de la Universidad de Strathclyde, que dirige la investigación espacial, piensa que el espacio ofrece una fantástica fuente para energía solar, con capacidad para producir energía independientemente de la hora del día o las condiciones climáticas. 

En un experimento sobre el Círculo Polar Ártico conocido como Suaineadh, fue un importante paso adelante en el diseño de un prototipo con una tecnología similar, a la de una sonda solar espacial, poniendo de manifiesto que las estructuras más grandes podrían ser construidas, preparando el camino para la siguiente etapa en el proyecto de energía solar espacial.

El proyecto actual, llamado SAM (Self-inflating Adaptable Membrane) pondrá a prueba el despliegue de una estructura celular ultra ligera, que puede cambiar de forma una vez desplegado. La estructura está hecha de células que son autoinflables en el vacío y puede cambiar su volumen de forma independiente a través nanopumps.

La estructura reproduce la estructura celular natural que existe en todos los seres vivos. El control independiente de las células permite transformarse la estructura en un concentrador solar que recoge luz solar y la proyecta a los paneles solares. La misma estructura se puede utilizar para construir sistemas de mayor tamaño en el espacio mediante el ensamblaje de miles de pequeñas unidades individuales. Si todo va según lo previsto, un día podríamos tener una red de satélites solares que esencialmente cosecharan energía solar y terminara con el déficit energético en el mundo.

Descubierta una variante del grafeno con la que poder acelerar el desarrollo de semiconductores



No hay duda de que el silicio como material ha revolucionado el mundo en que vivimos y ha sido la razón de muchos de los logros y los avances tecnológicos. Los transistores de silicio basados ​​son la clave para todos los chips de computadoras y los procesadores de teléfonos inteligentes que vemos hoy. En nuestra búsqueda de mejores y más rápidos los dispositivos electrónicos, nos hizo tropezar con el silicio y ahora lo han llevado a su extremo absoluto en términos de rendimiento y tamaño. Los dispositivos de silicio basados  no se puede conseguir más pequeños de lo que son ahora y los investigadores se han movido en la dirección de el grafeno como material potencial con el que conseguir tecnologías mas avanzadas.



El grafeno se basa en una sola capa de átomos de carbono que se organizan en una estructura de panal, en un intento de sintetizar los semiconductores y componentes de circuitos que se utilizan. 
Un equipo de científicos de la Universidad de Wisconsin en Milwaukee (UW-M) en Estados Unidos, dirigidos por Junhong Chen (ingeniería  mecánica) y Marija Gajdardziska (física) tropezó con el  Monóxido de grafeno como posible solución para desarrollar semiconductores. El descubrimiento que se realizo de forma accidental, ya que estaban tratando de obtener puras hojas de grafeno a partir de su investigación a partir de óxido de grafeno. El calentamiento de óxido de grafeno a diferentes temperaturas produjo cuatro sustancias diferentes que el equipo bautizo como el grafeno de monóxido de carbono (OGM).


El recién descubierto OMG exhibió diversas propiedades que permitió al equipo concluir que puede ser utilizado como un material semiconductor. Como OMG está formada en hojas, puede incluso utilizarse como un catalizador de superficie y el equipo que descubrió esta estructura única de OMG, piensa que sus propiedades semiconductoras son la esperanza para sintetizar semiconductores en un futuro.

El monóxido de grafeno es un descubrimiento reciente y tardara mucho tiempo, hasta que los investigadores comprendan todo su potencial. El equipo admite que todavía tienen que probar cómo responde OGM a diferentes temperaturas y cuan estable puede estar en condiciones reales de trabajo. La comprensión de cómo el calor afecta el monóxido de grafeno es el siguiente gran paso hacia adelante en esta investigación.

Rana 2, moto eléctrica con batería intercambiable de 30 años de vida


Hartmut Esslinger es conocido por haber colaborado con Apple en muchos de sus diseños de computadoras mas emblemáticos de los años 80 y principios de los 90, pero  su trabajo no se ​​limitó a Macintosh: la Rana es uno de los experimentos más salvajes creados por la firma que fundo el propio Hartmut  Esslinger.  Incluso el fabricante Yamaha se inspiro en su prototipo para diseñar FZ750 , habiendo siendo añadida a la colección del Museo de San Francisco como parte de la colección permanente de arte moderno.


Veinticinco años después presenta la Rana 2, que promete revolucionar el mundo de las dos ruedas, ya que funciona con baterías eléctricas, que pueden ser intercambiadas cuando se agotan. Aunque las características incorporadas en la moto ya se han integrado en muchas motos modernas, esta versión actualizada representa la evolución en la tecnología. Por ejemplo, la Rana 2 incluye tres núcleos en la batería que, presumiblemente, compuestos por las nanopartículas cristalinas de hexacianoferrato de cobre, aún en fase de experimentación. 

En pruebas de laboratorio, el electrodo ha resistido 40.000 ciclos de carga y descarga, después de lo cual todavía mantiene más del 80 por ciento de su capacidad de carga original. En comparación, el promedio de una batería de iones de litio puede alcanzar alrededor de 400 ciclos de carga/descarga antes de que se deteriore demasiado como para tener un uso práctico, teniendo una vida útil de hasta 30 años.


Las baterías situadas en la parte inferior del chasis debajo del espacio abierto, ayudan a reducir el centro de gravedad. El manillar se fija al chasis así que en vez de mover físicamente la parte delantera, el eBike utiliza medios electrónicos fly-by-wire en la dirección. Otras características que incluyen, una matriz OLED display digital y  conectividad en línea. La rana eBike iría acompañado de un casco equipado con el heads-up display con el seguimiento de la retina.


Desarrollan células solares biofotovoltaicas baratas a partir de vegetales

La comunidad científica lleva años investigado el desarrollo de  células solares a partir del conjunto de las moléculas dentro de la planta que realizan la fotosíntesis, conocidas como photosystem-I (fotosistema-I). Sin embargo, este material requiere una película delgada por deposición y tecnología óptica. Un estudio dirigido por el investigador Andreas Mershin perteneciente al MIT y publicado en el ultimo numero de Scientific Reports, describe un método mejorado para la fabricación de "biophotovoltaics" (biofotovoltaicos) productoras de energía de origen solar.  

Los complejos pigmento-proteína también contienen componentes específicos para la transferencia de electrones, que son importantes para la obtención de energía mediante el proceso de fotosíntesis. La organización de los complejos pigmento-proteína dentro de la membrana del tilacoide es tal que en realidad pueden ser distinguidos dos fotosistemas. Cada fotosistema contiene un conjunto de clorofilas y carotenoides conocido como pigmentos antena, por la función que realizan. 


Los investigadores del MIT imprimieron células solares en un papel del tamaño de dos por uno: puntos cuánticos, el resultado es  la creación de una célula solar  viable usando una combinación de nuevos materiales que aislan a las moléculas de PS-I y forman un conjunto de diminutos nanocables de óxido de zinc, así como dióxido de titanio esponjoso (TiO2) nano estructura revestida con el colector de luz material derivado de las bacterias. logrando una superficie semiconductora. Por último, se demostró una alta afinidad péptido motifs10 para promover la adsorción selectiva  de sustratos que pueden mejorar el rendimiento fotovoltaico. Estos materiales, se podrían al diseño de dispositivos sencillos, robustos y de rendimiento sin precedentes.

El avance representa una mejora de la eficiencia 10,000 por ciento respecto a las células solares anteriores producidas con materia biologica, a pesar de esta mejora todavía están lejos de ser productivas, ya que solo aprovechan 0,1 por ciento de la luz solar, tasa que aun esta muy lejos de ser rentable. La clave para la consecución de este gran mejora en la eficiencia,  fue encontrar una manera de exponer mucho más de la zona de PS- I por unidad de superficie del dispositivo al sol, la inspiración Mershin para el nuevo avance fue debido a una visita de un bosque de  pinos.

Debido a que el sistema es tan barato y sencillo, se espera que esto se convierta en una forma de conseguir electricidad a personas que nunca han sido considerados como consumidores o productores de energía solar" Se espera que las instrucciones para hacer un solar celular será lo suficientemente simple para ser reducido a "una hoja de instrucciones." El único ingrediente que se adquiría  serían los químicos para estabilizar las moléculas de PS-I, que combinados con residuos vegetales producirian.

Paneles solares fabricados con puntos cuánticos obtienen hasta 48% de energía, doblando la producción actual

Los resultados recientes de dos investigaciónes realizados por científicos pertenecientes al National Renewable Energy Laboratory (NREL)y a la Universidad de Texas en Austinen Estados Unidos han corroborado los prometedores resultados por el equipo del Instituto Kavil de Nanociencia de TU Delft en Holanda, y que lleva trabajando desde 2.008 en el desarrollo de la tercera generación de células solares, las denominadas células solares cuánticas, que elevan el ratio de aprovechamiento de radiación solar hasta el 48%, cuando en la actualidad con el modelo basado en silicio, oscila entre el 15% y el 21%. 
Las células solares basadas en silicio solo poseen la capacidad para excitar un electrón por cada fotón capturado de la radiación solar irradiada, por lo que la cantidad que se pierde es mucha, mientras que en una celda de punto cuántico solar, puede con  una partícula de luz puede excitar varios electrones. Cuanta mas elevado es el nivel de estres al que se somete a los electrones, mayor será la eficiencia de la célula solar.

La linea de investigación que  explota nuevos fenómenos de la mecánica cuántica en las estructuras a escala nanométrica.  En la actualidad se centra en anillos superconductores, los puntos cuánticos, nanocables, nanotubos de carbono, el diamante, y el grafeno. Aplicados a estos dispositivos para controlar el comportamiento cuántico en el nivel de giros y fotones individuales, con la posibilidad de avances fundamentales en el desarrollo de paneles mas económicos y  eficientes energeticamente, aprovechado mejor las propiedades de la energía solar.

Los investigadores del Kavil de Nanociencia de TU Delft  en los Países Bajos han demostrado que los electrones pueden moverse libremente en las capas de nanopartículas semiconductoras vinculados bajo la influencia de la luz en un avance reduce las perdidas de energía que se producen con las celdas fabricadas con silicio cristalino.
Por otra parte, el equipo de la Universidad de Texas en Austin, ha desarrollado un material semiconductor de plástico capaz de duplicar el número de electrones producidos a partir de un fotón de luz. La captura de "electrones calientes" que normalmente se pierde como calor residual, se recupera obteniendo una eficiencia del 44 por ciento, mucho más allá de límite teórico actual de 31 por ciento, de acuerdo con el químico Xiaoyang Zhu que ha presentado el informe y redactado el estudio.

Según Matt Beard, científico senior y autor del artículo publicado en Science sobre el tema,
se está trabajando para sacar provecho de un fenómeno conocido como Multiple Exciton Generation (MEG), donde un fotón de una célula solar puede generar más de un electrón. La utilización de este proceso podría permitir a los científicos crear materiales capaces de  extraer energía útil a partir de fotones de alta energía en el rango de luz violeta y ultravioleta del espectro.
El desarrollo de pequeños cristales de unos pocos nanómetros de tamaño, capaces de capturar fotones de alta energía que las células solares de hoy en día no lo hacen.  creando a partir  de tecnología basada en procesos electrónicos MEG obteniendo celdas  múltiples de pentaceno, un semiconductor de plástico que podría conducir a células solares baratas. 

Spencer Finch diseña Lunar, una instalaccion que se comporta casi como el satélite de la tierra


La forma elegida por el artista Spencer Finch para su ultima instalación, se basa en una estructura buckyball, cuyo volumen y forma consiste en una nano-estructura compuesta de 60 átomos de carbono (siendo su nombre químico C60).


Esta figura que sólo se puede observar a través del microscópico posee entre otras propiedades la de presentar una simetría casi perfecta, y la de ser un extraordinario superconductor. Se trata en definitiva de una nueva forma del carbono que tiene una geometría similar a un icosaedro. 


Y que desde el instante en que conoció de su existencia Spencer le cautivo inspirandole para diseñar Lunar, una instalación que combina la expresión artística y el conocimiento científico. elementos con los que según su autor ha querid recrear el satelite orbita alrededor de la tierra mediante el la intensidad de la luz que emite.

Con el fin de materializar esta idea siendo lo más fiel posible a las características de la estrella, primero creo un instrumento llamado colorimeter (clorimetro) con el que midió el rango de luz que emitía el satelite en fase de luna llena. Con los datos obtenidos y empleando un armazón de aluminio y acero inoxidable.


La instalación se podrá visitar hasta Abril de 2.012 en el Art Institute of ChicagoSe construyó a partir de una cubierta a la que se le incorporo efectos luminicos, adheriendolo una serie de luces LED de color naranja ademas paneles de policarbonato translúcido. 


Dado que la luna en realidad lo que hace es reflejar la luz del sol, Finch quería recrear este fenómeno a través del uso de la energía solar. Dos paneles solares conectados a la escultura generan la energía que se almacena en una batería. Con la que por la noche ilumina Lunar obteniendo el color y el brillo preciso en términos de luminosidad al que emite la luna llena cuando se observa desde la tierra. 


Solar Botanic - Arboles nanotecnologicos productores de energía


Sol, viento, agua y tierra han demostrado ser elementos que gestionado de forma sostenible, pueden proporcionar energia mas que suficiente como para cubrir las necesidades de suministro de la humanidad. Las soluciones que como consecuencia de la tecnologia y la innovación, son practicamente infinitas, de un tiempo a esta parte en el sector de la nanotecnologia aplicada se estan desarrollando proyectos de investigación relacionados con las energias verdes, que hacen pensar que en un futuro no muy lejano, la dependencia de los combustibles sera un episodio del pasado remoto. Uno de estos proyectos es el que desarrolla Solar Botanic , se tratan de arboles artificiales que incorpora sistema de captación de energia renovable diseñados a escala nanotecnologica

Los arboles artificiales de Solar Botanic son estéticamente idénticos a los naturales, la diferencia esta en los materiales que se emplean en la fabricación de sus estructuras y en la tecnología que integra los diferentes sistemas de captación de energía con los que esta dotado. Solar Botanic es la primera compañía en introducir una nueva dimensión de la reducción de costos mediante la combinación de dos fuentes de energía, energía solar y eólica, en un sistema basado en la naturaleza del diseño biomimética. 
La forma en que se captura energía a través del sistema patentado (Nanoleaf) una tecnología que captura la energía radiante del sol con las células y fotovoltaicas y termovoltaicas que realiza la conversión de la radiación en electricidad por mediación de elementos piezoeléctricos. La producción de energía también se produce a través de la fuerza dinámica producida por las hojas al ser mecidas por el viento.

Las Nanoleaves no sólo reflejan una pequeña parte de la luz solar que incide sobre ellas. Además de la conversión del espectro visible de luz, las Nanoleaves también convierten la luz invisible, conocida como luz infrarroja o radiación, no podemos verla, pero podemos sentirla - en forma de calor - es por eso que lo llamamos radiación. Debido a la combinación única de energía fotovoltaica y termovoltaica de las Nanoleaves convierte esta radiación térmica en electricidad, incluso horas después de la puesta del sol. De acuerdo con Solar Botánic, un árbol de hoja ancha artificial parecido a un roble o arce podría generar un 3500kWh y 7000kWh por año. Además, como los arboles análogos, podrían proporcionar sombra en verano, crear una barrera acústica y visualmente ofrecer la decoración de los techos urbanos, incluso pueden incorporar sistemas de aire filtración. 



Nuevo método para almacenar hidrógeno con materiales a escala nanotecnologica

 
El hidrógeno es una alternativa energética para reemplazar los combustibles fósiles desde la década de 1970. Pero el potencial de hidrógeno como vector energético no se ha desarrollado, debido principalmente debido a la a los estándares producción comercial y a las dificultades que plantea su almacenamiento. Se han venido realizado investigaciones sobre las fuentes de energía renovables como el hidrógeno desde hace algunos años. Recientemente, la investigación de vanguardia ha sido capaz de crear un nuevo método para almacenar hidrógeno. Con lo que corregir los inconvenientes que plantea el uso de hidrógeno.

La forma tradicional de fijación de hidrógeno en sólidos no ha tenido mucho éxito. Los volúmenes de hidrógeno absorbidos durante el almacenamiento son muy reducidos y los métodos son demasiado complicados con lo que se encarece su explotación. Estas dificultades se podrían gracias al nuevo método para almacenar el hidrógeno. Creado por un equipo de científicos del Lawrence Berkeley National Laboratory (Berkeley Lab) , del Departamento de Energía (DOE) , de EE.UU. dirigidos por Jeff Urban Director Adjunto, de nanoestructuras inorgánicas dela Oficina del Nano-Science Center DOE, Berkeley Lab  que han descubierto un nuevo material bautizado como aire estable de magnesio a escala nano, compuestos que pueden ayudar en el almacenamiento de hidrógeno. 


Este material compuesto consiste en "nano-partículas de metal de magnesio filtrado a través de una matriz de polimetacrilato de metilo -. Un polímero relacionado con el Plexiglas, Las ventajas del nuevo material radican en que este material nano-compuesto es  flexible siendo capaz de absorber y liberar el hidrógeno a una temperatura normal evitando la oxidación del catalizador de metal. Esta capacidad ha sido considerada el gran paso de la hacia un mejor diseño para el almacenamiento de hidrógeno, pilas de hidrógeno y pilas de combustible de hidrógeno. 

Los ensayos realizadas con estos nuevos materiales han sido satisfactorias,  estos materiales compuestos fabricados a nano escala han sido capaces de superar las barreras termodinámicas y cinéticas que están presente en la naturaleza. Observando el nuevo material se observó el comportamiento de materiales a través del microscopio TEAM 0.5  perteneciente al Centro Nacional de Microscopía Electrónica (NCEM). Se siguió el comportamiento de almacenamiento de hidrógeno en el material nuevo. Los investigadores estudiaron el rendimiento de hidrógeno en el material nano-compuestos en el  Energía y Medio Ambiente División de Tecnologías (EETD) en el EETD Berkeley Lab, donde han realizado investigaciones pioneras acerca de  tecnologías con energías renovables, su generación y almacenamiento, incluido el hidrógeno. 

Desarrollan un dispositivo a escala nano para producir energía corporal

Cuando se trata sistemas energéticos basados en tecnología nanotecnologíca, los movimientos más pequeños, aparentemente pueden  proporcionar energía de origen renovable. Este fenomeno de la física es lo que se están  en la Universidad de Wisconsin en Madison. Dirigidos por el profesor de ciencia de los materiales e ingeniería  Xudong Wang, el investigador postdoctoral Chengliang Sol y el estudiante graduado Jian Shi, han creado lo que ellos denominan como un microbelt de plástico que vibra  con el movimiento del aire a baja velocidad,  que produces el movimiento de la respiración humana.

Un dispositivo que podría obtener su energía de los movimientos naturales del cuerpo, tales como la respiración, el flujo de sangre, el movimiento y el calor, podría cambiar drásticamente la cara de la tecnología biomédica. Con esta fuente constante de energía, los marcapasos, por ejemplo, no tendría que ser reemplazado, y los dispositivos de forma regular puede medir los niveles de glucosa en sangre en personas con diabetes. El prototipo microbelt utiliza fluoruro de polivinilideno (PVDF), que convierte la energía del flujo de aire a baja velocidad en electricidad a través de su oscilación resonante. este registra una  carga eléctrica en respuesta al este estrés mecánico corporal en lo que se conoce como el efecto piezoeléctrico. Esta carga eléctrica es suficiente para  hacer funcionar pequenos dispositivos de energía eléctrica, el tipo de los utilizados en nanotecnología.

Para crear el microbelt, Wang y su equipo utilizaron un proceso de iones de grabado para las películas de PVDF de un micrometro de espesor sin afectar a sus propiedades piezoeléctricas. Aunque hay que efectuar mejoras en el proceso, hasta diluir el PVDF en una medida inferior a la micra. Como cualidad adicional, decir que el PVDF es bio-compatible, por lo que es un candidato ideal para la promoción de micro-dispositivos médicos.

Básicamente, el proceso consiste en cosechar la energía mecánica que generan los sistemas biológicos. El flujo de aire de la respiración humana normal suele estar por debajo de unos dos metros por segundo. Calculamos que si pudiéramos hacer  películas de este material lo suficientemente delgadas,  la pequeñas vibraciones podrían producir unos microvatios de energía eléctrica que podría ser útil para  desarrollar aplicaciones sensores u otros dispositivos que requirieran poca energía.

Nanosensores de transcripcion celular

Los sensores fabricados a partir de moléculas de ADN a medida se podrían utilizar para personalizar los tratamientos contra el cáncer y controlar la calidad de las células madre, según un equipo internacional de investigadores liderados por científicos de la Universidad de California en Santa Bárbara y la Universidad de Roma Tor Vergata. 

La nueva generación de nanosensores pueden detectar rápidamente una amplia clase de proteínas llamadas factores de transcripción, que sirven como interruptores de control maestro en los moleculares. La investigación se describe en un artículo publicado en Journal of the American Chemical Society. El destino de nuestras células está controlada por miles de proteínas diferentes, conocidos como factores de transcripción. Según Alexis Vallée-Bélisle, un investigador postdoctoral del Departamento de UCSB de Química y Bioquímica, quien dirigió el estudio. "El papel de estas proteínas es la lectura del genoma y su traducción a instrucciones para la síntesis de las diferentes moléculas que controlan la expresión célular. 

Los factores de transcripción actúan un poco como la" configuración "de nuestras células, al igual que la configuración de nuestros teléfonos u ordenadores. Lo que nuestros sensores hacer leer los valores. "Cuando los científicos utilizan las células madre y los convierten en células especializadas, lo hacen modificando los niveles de algunos factores de transcripción.

Este proceso se denomina reprogramación celular. Nuestros sensores de seguimiento de las actividades del factor de transcripción, se podrían utilizar para asegurar que las células madre han sido debidamente reprogramadas. También se podría emplear para determinar qué factores de transcripción son activados o reprimidos en las células cancerosas de un paciente, lo que permitiría a los facultativos utilizar la combinación correcta de medicamentos para cada paciente.

Andrew Bonham, investigador postdoctoral en la UCSB y co-primer autor del estudio, explicó que muchos laboratorios han desarrollado métodos para leer los factores de transcripción, sin embargo, el enfoque de este equipo es mas rápido y eficaz. En la mayoría de los laboratorios, los investigadores pasan horas extrayendo las proteínas de las células antes de su análisis. Con los nuevos sensores, se puede medir el nivel de fluorescencia de la muestra lo que facilita la transcripción celular.

Toda la información necesaria para detectar la transcripción de las actividades de los factores en el genoma humano, podría ser utilizado para construir sensores. Una vez activados, estos miles de diferentes factores de transcripción se unen a su propia secuencia específica de ADN. Utilizamos estas secuencias como punto de partida para construir nanosensores mas precisos. El descubrimiento clave que subyace en esta nueva tecnología es la continuación de estudios de los biosensores naturales que se expresan en las células. 

Todas las criaturas, desde las bacterias hasta los seres humanos, controlar su entorno con" interruptores biomoleculares, este proceso se realiza a partir de moléculas de ARN o proteínas. Por ejemplo, hay millones de proteínas de los receptores que detectan las moléculas de olor diferente  cambiando de un" estado de apagado "a un" estado de encendido. La belleza de estos interruptores es que son lo suficientemente pequeños para operar dentro de una célula, y lo suficientemente específicos como para alterar el proceso celular con un resultado concreto. 

Inspirado por la eficiencia de estos nanosensores, el grupo de investigación de Norbert Reich, también profesor en el Departamento de UCSB de Química y Bioquímica, construyo nanosensores sintéticos de conmutación utilizando el ADN, en lugar de proteínas o ARN. En concreto, el equipo de reprogramo tres secuencias de ADN, cada uno reconocía un factor de transcripción diferente, estos interruptores moleculares que se convierten en fluorescentes cuando se unen a sus receptores. Con el uso de estos sensores a escala nanométrica, los investigadores pudieron determinar la actividad del factor de transcripción directamente en extractos celulares simplemente midiendo su nivel de fluorescencia.

Los investigadores creen que esta estrategia en última instancia, permitiría a los biólogos controlar la activación de miles de factores de transcripción, lo que facultara una mejor comprensión de la división celular y los mecanismos subyacentes al desarrollo.