Mostrando entradas con la etiqueta nanotecnología. Mostrar todas las entradas

Desarrollan un satélite solar productor de energía


Si bien la energía solar ha sido durante mucho tiempo considerada como clave para resolver las demandas de energía del planeta tierra, el problema de la eficiencia y almacenamiento supone todavía un handicap, y aunque esta en vía de resolverse, todavía habrá que esperar hasta que madure tecnologicamente. Una de las vías que se están explorando en la actualidad, es la posibilidad de generar energía de origen solar en el espacio, aparentemente esta opción es la mas coherente,  cuanto mas próximo de este de la fuente productora de energía (en este caso el sol) mas intensa sera la radiación, fenómeno que incrementara la cuota de producción. Pero logisticamente se plantea un problema, el transporte de la energía recolectada hasta las plantas de distribución en la Tierra. 

Sin embargo, un equipo de ingenieros de la Universidad de Strathclyde en Glasgow creen poseer  la clave para que la energía solar producida en  una órbita espacial, no plantee grandes dificultades su traslado y consumo en la  Tierra. El equipo está probando actualmente un sistema que actuaría como una plataforma para que los paneles solares, produjera energía aprovechando el máximo espectro solar, permitiendo que sea transferido de vuelta a la tierra utilizando sistemas basados microondas o rayos láser.


Estos 'satélites solares" serían capaces de proporcionar al planeta una fuente inagotable de energía que permitiría, suministraría  de energía a zonas remotas y proporcionar energía a las áreas que son difíciles de alcanzar por medios tradicionales. El doctor Massimiliano Vasile, del Departamento de Ingeniería Mecánica y Aeroespacial de la Universidad de Strathclyde, que dirige la investigación espacial, piensa que el espacio ofrece una fantástica fuente para energía solar, con capacidad para producir energía independientemente de la hora del día o las condiciones climáticas. 

En un experimento sobre el Círculo Polar Ártico conocido como Suaineadh, fue un importante paso adelante en el diseño de un prototipo con una tecnología similar, a la de una sonda solar espacial, poniendo de manifiesto que las estructuras más grandes podrían ser construidas, preparando el camino para la siguiente etapa en el proyecto de energía solar espacial.

El proyecto actual, llamado SAM (Self-inflating Adaptable Membrane) pondrá a prueba el despliegue de una estructura celular ultra ligera, que puede cambiar de forma una vez desplegado. La estructura está hecha de células que son autoinflables en el vacío y puede cambiar su volumen de forma independiente a través nanopumps.

La estructura reproduce la estructura celular natural que existe en todos los seres vivos. El control independiente de las células permite transformarse la estructura en un concentrador solar que recoge luz solar y la proyecta a los paneles solares. La misma estructura se puede utilizar para construir sistemas de mayor tamaño en el espacio mediante el ensamblaje de miles de pequeñas unidades individuales. Si todo va según lo previsto, un día podríamos tener una red de satélites solares que esencialmente cosecharan energía solar y terminara con el déficit energético en el mundo.

Descubierta una variante del grafeno con la que poder acelerar el desarrollo de semiconductores



No hay duda de que el silicio como material ha revolucionado el mundo en que vivimos y ha sido la razón de muchos de los logros y los avances tecnológicos. Los transistores de silicio basados ​​son la clave para todos los chips de computadoras y los procesadores de teléfonos inteligentes que vemos hoy. En nuestra búsqueda de mejores y más rápidos los dispositivos electrónicos, nos hizo tropezar con el silicio y ahora lo han llevado a su extremo absoluto en términos de rendimiento y tamaño. Los dispositivos de silicio basados  no se puede conseguir más pequeños de lo que son ahora y los investigadores se han movido en la dirección de el grafeno como material potencial con el que conseguir tecnologías mas avanzadas.



El grafeno se basa en una sola capa de átomos de carbono que se organizan en una estructura de panal, en un intento de sintetizar los semiconductores y componentes de circuitos que se utilizan. 
Un equipo de científicos de la Universidad de Wisconsin en Milwaukee (UW-M) en Estados Unidos, dirigidos por Junhong Chen (ingeniería  mecánica) y Marija Gajdardziska (física) tropezó con el  Monóxido de grafeno como posible solución para desarrollar semiconductores. El descubrimiento que se realizo de forma accidental, ya que estaban tratando de obtener puras hojas de grafeno a partir de su investigación a partir de óxido de grafeno. El calentamiento de óxido de grafeno a diferentes temperaturas produjo cuatro sustancias diferentes que el equipo bautizo como el grafeno de monóxido de carbono (OGM).


El recién descubierto OMG exhibió diversas propiedades que permitió al equipo concluir que puede ser utilizado como un material semiconductor. Como OMG está formada en hojas, puede incluso utilizarse como un catalizador de superficie y el equipo que descubrió esta estructura única de OMG, piensa que sus propiedades semiconductoras son la esperanza para sintetizar semiconductores en un futuro.

El monóxido de grafeno es un descubrimiento reciente y tardara mucho tiempo, hasta que los investigadores comprendan todo su potencial. El equipo admite que todavía tienen que probar cómo responde OGM a diferentes temperaturas y cuan estable puede estar en condiciones reales de trabajo. La comprensión de cómo el calor afecta el monóxido de grafeno es el siguiente gran paso hacia adelante en esta investigación.

Rana 2, moto eléctrica con batería intercambiable de 30 años de vida


Hartmut Esslinger es conocido por haber colaborado con Apple en muchos de sus diseños de computadoras mas emblemáticos de los años 80 y principios de los 90, pero  su trabajo no se ​​limitó a Macintosh: la Rana es uno de los experimentos más salvajes creados por la firma que fundo el propio Hartmut  Esslinger.  Incluso el fabricante Yamaha se inspiro en su prototipo para diseñar FZ750 , habiendo siendo añadida a la colección del Museo de San Francisco como parte de la colección permanente de arte moderno.


Veinticinco años después presenta la Rana 2, que promete revolucionar el mundo de las dos ruedas, ya que funciona con baterías eléctricas, que pueden ser intercambiadas cuando se agotan. Aunque las características incorporadas en la moto ya se han integrado en muchas motos modernas, esta versión actualizada representa la evolución en la tecnología. Por ejemplo, la Rana 2 incluye tres núcleos en la batería que, presumiblemente, compuestos por las nanopartículas cristalinas de hexacianoferrato de cobre, aún en fase de experimentación. 

En pruebas de laboratorio, el electrodo ha resistido 40.000 ciclos de carga y descarga, después de lo cual todavía mantiene más del 80 por ciento de su capacidad de carga original. En comparación, el promedio de una batería de iones de litio puede alcanzar alrededor de 400 ciclos de carga/descarga antes de que se deteriore demasiado como para tener un uso práctico, teniendo una vida útil de hasta 30 años.


Las baterías situadas en la parte inferior del chasis debajo del espacio abierto, ayudan a reducir el centro de gravedad. El manillar se fija al chasis así que en vez de mover físicamente la parte delantera, el eBike utiliza medios electrónicos fly-by-wire en la dirección. Otras características que incluyen, una matriz OLED display digital y  conectividad en línea. La rana eBike iría acompañado de un casco equipado con el heads-up display con el seguimiento de la retina.


Desarrollan células solares biofotovoltaicas baratas a partir de vegetales

La comunidad científica lleva años investigado el desarrollo de  células solares a partir del conjunto de las moléculas dentro de la planta que realizan la fotosíntesis, conocidas como photosystem-I (fotosistema-I). Sin embargo, este material requiere una película delgada por deposición y tecnología óptica. Un estudio dirigido por el investigador Andreas Mershin perteneciente al MIT y publicado en el ultimo numero de Scientific Reports, describe un método mejorado para la fabricación de "biophotovoltaics" (biofotovoltaicos) productoras de energía de origen solar.  

Los complejos pigmento-proteína también contienen componentes específicos para la transferencia de electrones, que son importantes para la obtención de energía mediante el proceso de fotosíntesis. La organización de los complejos pigmento-proteína dentro de la membrana del tilacoide es tal que en realidad pueden ser distinguidos dos fotosistemas. Cada fotosistema contiene un conjunto de clorofilas y carotenoides conocido como pigmentos antena, por la función que realizan. 


Los investigadores del MIT imprimieron células solares en un papel del tamaño de dos por uno: puntos cuánticos, el resultado es  la creación de una célula solar  viable usando una combinación de nuevos materiales que aislan a las moléculas de PS-I y forman un conjunto de diminutos nanocables de óxido de zinc, así como dióxido de titanio esponjoso (TiO2) nano estructura revestida con el colector de luz material derivado de las bacterias. logrando una superficie semiconductora. Por último, se demostró una alta afinidad péptido motifs10 para promover la adsorción selectiva  de sustratos que pueden mejorar el rendimiento fotovoltaico. Estos materiales, se podrían al diseño de dispositivos sencillos, robustos y de rendimiento sin precedentes.

El avance representa una mejora de la eficiencia 10,000 por ciento respecto a las células solares anteriores producidas con materia biologica, a pesar de esta mejora todavía están lejos de ser productivas, ya que solo aprovechan 0,1 por ciento de la luz solar, tasa que aun esta muy lejos de ser rentable. La clave para la consecución de este gran mejora en la eficiencia,  fue encontrar una manera de exponer mucho más de la zona de PS- I por unidad de superficie del dispositivo al sol, la inspiración Mershin para el nuevo avance fue debido a una visita de un bosque de  pinos.

Debido a que el sistema es tan barato y sencillo, se espera que esto se convierta en una forma de conseguir electricidad a personas que nunca han sido considerados como consumidores o productores de energía solar" Se espera que las instrucciones para hacer un solar celular será lo suficientemente simple para ser reducido a "una hoja de instrucciones." El único ingrediente que se adquiría  serían los químicos para estabilizar las moléculas de PS-I, que combinados con residuos vegetales producirian.

Paneles solares fabricados con puntos cuánticos obtienen hasta 48% de energía, doblando la producción actual

Los resultados recientes de dos investigaciónes realizados por científicos pertenecientes al National Renewable Energy Laboratory (NREL)y a la Universidad de Texas en Austinen Estados Unidos han corroborado los prometedores resultados por el equipo del Instituto Kavil de Nanociencia de TU Delft en Holanda, y que lleva trabajando desde 2.008 en el desarrollo de la tercera generación de células solares, las denominadas células solares cuánticas, que elevan el ratio de aprovechamiento de radiación solar hasta el 48%, cuando en la actualidad con el modelo basado en silicio, oscila entre el 15% y el 21%. 
Las células solares basadas en silicio solo poseen la capacidad para excitar un electrón por cada fotón capturado de la radiación solar irradiada, por lo que la cantidad que se pierde es mucha, mientras que en una celda de punto cuántico solar, puede con  una partícula de luz puede excitar varios electrones. Cuanta mas elevado es el nivel de estres al que se somete a los electrones, mayor será la eficiencia de la célula solar.

La linea de investigación que  explota nuevos fenómenos de la mecánica cuántica en las estructuras a escala nanométrica.  En la actualidad se centra en anillos superconductores, los puntos cuánticos, nanocables, nanotubos de carbono, el diamante, y el grafeno. Aplicados a estos dispositivos para controlar el comportamiento cuántico en el nivel de giros y fotones individuales, con la posibilidad de avances fundamentales en el desarrollo de paneles mas económicos y  eficientes energeticamente, aprovechado mejor las propiedades de la energía solar.

Los investigadores del Kavil de Nanociencia de TU Delft  en los Países Bajos han demostrado que los electrones pueden moverse libremente en las capas de nanopartículas semiconductoras vinculados bajo la influencia de la luz en un avance reduce las perdidas de energía que se producen con las celdas fabricadas con silicio cristalino.
Por otra parte, el equipo de la Universidad de Texas en Austin, ha desarrollado un material semiconductor de plástico capaz de duplicar el número de electrones producidos a partir de un fotón de luz. La captura de "electrones calientes" que normalmente se pierde como calor residual, se recupera obteniendo una eficiencia del 44 por ciento, mucho más allá de límite teórico actual de 31 por ciento, de acuerdo con el químico Xiaoyang Zhu que ha presentado el informe y redactado el estudio.

Según Matt Beard, científico senior y autor del artículo publicado en Science sobre el tema,
se está trabajando para sacar provecho de un fenómeno conocido como Multiple Exciton Generation (MEG), donde un fotón de una célula solar puede generar más de un electrón. La utilización de este proceso podría permitir a los científicos crear materiales capaces de  extraer energía útil a partir de fotones de alta energía en el rango de luz violeta y ultravioleta del espectro.
El desarrollo de pequeños cristales de unos pocos nanómetros de tamaño, capaces de capturar fotones de alta energía que las células solares de hoy en día no lo hacen.  creando a partir  de tecnología basada en procesos electrónicos MEG obteniendo celdas  múltiples de pentaceno, un semiconductor de plástico que podría conducir a células solares baratas. 

Spencer Finch diseña Lunar, una instalaccion que se comporta casi como el satélite de la tierra


La forma elegida por el artista Spencer Finch para su ultima instalación, se basa en una estructura buckyball, cuyo volumen y forma consiste en una nano-estructura compuesta de 60 átomos de carbono (siendo su nombre químico C60).


Esta figura que sólo se puede observar a través del microscópico posee entre otras propiedades la de presentar una simetría casi perfecta, y la de ser un extraordinario superconductor. Se trata en definitiva de una nueva forma del carbono que tiene una geometría similar a un icosaedro. 


Y que desde el instante en que conoció de su existencia Spencer le cautivo inspirandole para diseñar Lunar, una instalación que combina la expresión artística y el conocimiento científico. elementos con los que según su autor ha querid recrear el satelite orbita alrededor de la tierra mediante el la intensidad de la luz que emite.

Con el fin de materializar esta idea siendo lo más fiel posible a las características de la estrella, primero creo un instrumento llamado colorimeter (clorimetro) con el que midió el rango de luz que emitía el satelite en fase de luna llena. Con los datos obtenidos y empleando un armazón de aluminio y acero inoxidable.


La instalación se podrá visitar hasta Abril de 2.012 en el Art Institute of ChicagoSe construyó a partir de una cubierta a la que se le incorporo efectos luminicos, adheriendolo una serie de luces LED de color naranja ademas paneles de policarbonato translúcido. 


Dado que la luna en realidad lo que hace es reflejar la luz del sol, Finch quería recrear este fenómeno a través del uso de la energía solar. Dos paneles solares conectados a la escultura generan la energía que se almacena en una batería. Con la que por la noche ilumina Lunar obteniendo el color y el brillo preciso en términos de luminosidad al que emite la luna llena cuando se observa desde la tierra. 


Solar Botanic - Arboles nanotecnologicos productores de energía


Sol, viento, agua y tierra han demostrado ser elementos que gestionado de forma sostenible, pueden proporcionar energia mas que suficiente como para cubrir las necesidades de suministro de la humanidad. Las soluciones que como consecuencia de la tecnologia y la innovación, son practicamente infinitas, de un tiempo a esta parte en el sector de la nanotecnologia aplicada se estan desarrollando proyectos de investigación relacionados con las energias verdes, que hacen pensar que en un futuro no muy lejano, la dependencia de los combustibles sera un episodio del pasado remoto. Uno de estos proyectos es el que desarrolla Solar Botanic , se tratan de arboles artificiales que incorpora sistema de captación de energia renovable diseñados a escala nanotecnologica

Los arboles artificiales de Solar Botanic son estéticamente idénticos a los naturales, la diferencia esta en los materiales que se emplean en la fabricación de sus estructuras y en la tecnología que integra los diferentes sistemas de captación de energía con los que esta dotado. Solar Botanic es la primera compañía en introducir una nueva dimensión de la reducción de costos mediante la combinación de dos fuentes de energía, energía solar y eólica, en un sistema basado en la naturaleza del diseño biomimética. 
La forma en que se captura energía a través del sistema patentado (Nanoleaf) una tecnología que captura la energía radiante del sol con las células y fotovoltaicas y termovoltaicas que realiza la conversión de la radiación en electricidad por mediación de elementos piezoeléctricos. La producción de energía también se produce a través de la fuerza dinámica producida por las hojas al ser mecidas por el viento.

Las Nanoleaves no sólo reflejan una pequeña parte de la luz solar que incide sobre ellas. Además de la conversión del espectro visible de luz, las Nanoleaves también convierten la luz invisible, conocida como luz infrarroja o radiación, no podemos verla, pero podemos sentirla - en forma de calor - es por eso que lo llamamos radiación. Debido a la combinación única de energía fotovoltaica y termovoltaica de las Nanoleaves convierte esta radiación térmica en electricidad, incluso horas después de la puesta del sol. De acuerdo con Solar Botánic, un árbol de hoja ancha artificial parecido a un roble o arce podría generar un 3500kWh y 7000kWh por año. Además, como los arboles análogos, podrían proporcionar sombra en verano, crear una barrera acústica y visualmente ofrecer la decoración de los techos urbanos, incluso pueden incorporar sistemas de aire filtración.